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Localization-Delocalization Transition in Non-Hermitian Disordered Systems
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Using the supersymmetry technique, we study the localization-delocalization transition in quasi-one-
dimensional non-Hermitian systems with a direction. In contrast to chains, our model captures the
diffusive character of carriers’ motion at short distances. We calculate the joint probability of complex
eigenvalues and some other correlation functions. We find that the transition is abrupt and it is due to
an interplay between two saddle points in the free energy functional.

PACS numbers: 72.15.Rn, 73.20.Fz, 74.60.Ge
Non-Hermitian models with disorder have attracted
recently considerable attention [1–11]. Non-Hermitian
Hamiltonians appear in the context of flux lines in su-
perconductors [1], in transfer phenomena in lossy media
[8], in hydrodynamics [9], in QCD [10], and in quantum
mechanics of open systems [11].

The most important property of non-Hermitian Hamil-
tonians is that their eigenenergies can be complex inde-
pendently of the type of non-Hermiticity. Very interesting
physical systems are models with a direction. The simplest
Hamiltonian H of such models is written as

H �
�p 1 ih�2

2m
1 V �r� , (1)

where p is the momentum operator, V �r� is a random
potential, and h is a constant vector. One comes to the
Hamiltonian H , Eq. (1), by reducing the d 1 1 dimen-
sional classical problem of vortices in a superconductor
with columnar defects to a d-dimensional quantum prob-
lem. Then, the vector h is proportional to the component
of the magnetic field perpendicular to the line defects [1].

Considering the one-dimensional (1D) version of the
Hamiltonian H , Eq. (1), the authors of Ref. [1] predicted
a localization-delocalization transition that occurs at hc �
l21
c , where lc is the localization length at h � 0. At h #

l21
c the “imaginary vector-potential” h can be removed by

the “gauge transformation”

fk�r� � f0k�r� exp�hr� ,

fk�r� � f0k�r� exp�2hr� .
(2)

In Eq. (2), fk�r� and f̄k�r� are the right and left eigen-
functions; f0k�r� are those at h � 0. Carrying out the
transformation, Eq. (2), we see that the eigenvalues ek do
not depend on h. However, the gauge transformation ap-
plies only if the functions fk�r� do not grow at infinity.
For eigenfunctions of the form f0 � exp�2jrj�lc�, this is
possible if h , hc. For h . hc, one should take extended
wave functions, which leads to complex eigenenergies.

Qualitative arguments of Ref. [1] have been confirmed
for the disordered chains numerically as well as analyti-
cally [4–6]. At the same time, they are quite general and
one might expect that such a transition occurs in more
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complex systems, for example, in disordered quasi-one-
dimensional wires and films. Using the mapping of
Ref. [1], one expects such models to be relevant for
description of the vortices in slabs and 3D bulk supercon-
ductors. The wires and films are richer than the chains
because at distances larger than the mean free path l but
smaller than the localization length Lc the motion is dif-
fusive, whereas in disordered chains only ballistic motion
or localization are possible. As a result, properties of the
localization-delocalization transition in wires and films
can differ. The problem has not been addressed yet and
our paper is aimed at providing its basic understanding.

We study the distribution function of complex eigenen-
ergies P�´, y�, where ´ and y are the real and imaginary
parts of the energy, and correlations of eigenfunctions
of the Hamiltonian H , Eq. (1), at different points for
wires using the supersymmetry technique [12]. A proper
nonlinear supermatrix s model has been derived in
Ref. [3]. Its free energy functional Fh�Q� reads

Fh�Q� �
pn

8
Str

Z
�D�≠Q�2 2 4�gL 1 yL1t3�Q� dr ,

(3)

where D is the classical diffusion coefficient, n is the den-
sity of states, and the standard notations for the supertrace
Str and supermatrices Q, t3, L, and L1 are used [3,12].
The free energy functional Fh�Q�, Eq. (3), differs from the
conventional one F0�Q� (describing the Hermitian prob-
lem) by the presence of the “gauge-invariant” combination
≠Q � =Q 1 h�Q, L� instead of =Q.

The zero-dimensional (0D) version of the s model is
equivalent to models of random non-Hermitian matrices
[3], where no transition occurs. But the s model, Eq. (3),
holds in any dimension and one might expect that already
the 1D version would manifest the transition. So, one
could describe the transition using the transfer-matrix tech-
nique developed for the s model [13,14].

Surprisingly, the 1D s model with Fh�Q�, Eq. (3), does
not have any transition and physical quantities of interest
are smooth functions of h giving always a finite probabil-
ity of complex eigenenergies. At first glance, this result is
in an evident contradiction with the arguments of Ref. [1].
© 2000 The American Physical Society
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The resolution of this paradox is quite interesting. It
turns out that the s model with Fh�Q�, Eq. (3), describes
properly only the region of the delocalized states. The
functional F0�Q� should be used in the localized regime,
for any finite h , hc, where hc is a critical vector
potential. This replacement of the free energy, resembling
a first order transition, results in an abrupt change of
the eigenvalue distribution. At h , hc, all eigenenergies
are real, whereas at h . hc one gets a broad distribution
in the complex plane. Our results are universal for any
dimension when h ¿ hc. All this is in a contrast with the
results obtained for chains, where the spectrum changes
smoothly, showing an appearance of “arcs” when increas-
ing h [1,4], or “wings” when starting from the regime of
the strong non-Hermiticity [6]. A broad distribution is
natural for ensembles of non-Hermitian matrices [2,15].
For a single chain, eigenvalues form a spectral line.
Coupling of N chains produces N spectral lines in the
complex plane [16]; our broad distribution can be thought
of as a continuous limit of this.

Having formulated the rough picture of what happens
when changing the parameter h, let us present some details.
We first introduce the quantities which are to be studied.
Since eigenvalues of the Hamiltonian (1) can be complex,
it is convenient to double the size of relevant matrices [3],
thus “Hermitizing” the problem. The role of the Green
function is played by the function

B�r, r0� �
X
k

gfk�r�fk�r0�
�e 2 e

0
k�2 1 � y 2 e

00
k �2 1 g2

(4)

with an eigenenergy ek � e
0
k 1 ie00

k . The “density-density
correlator” in the present context is given by

Y �r, r0; e, y� �
1
p

lim
g!0

�B�r, r0�B�r0, r�� , (5)

where brackets imply impurity averaging. The limit g !
0, understood in all correlators, becomes important as soon
as h ! 0. The function Y �r, r0; e, y�, Eq. (5), establishes
a link between the localization properties and the joint
probability density of complex eigenenergies,

P�e, y� �
1
V

Z
dr dr0 Y �r, r0; e, y� , (6)

where V is the volume. We introduce also another
important correlator, X�r, r0; e, y� � C�r, r0; e, y� 1

C�r0, r; e, y�,

C�r, r0; e, y� �
1

2p
lim
g!0

�B�r, r0�B��r, r0�� . (7)

The correlator Y �r, r0; e, y�, Eq. (5), is invariant under the
transformation, Eq. (2), but X�r, r0; e, y� is not.

We further express as usual [3,12] the correlation func-
tions in terms of integrals over eight-component superfield
c�r�, average over the white-noise disorder potential V �r�,
decouple the c4 term by 8 3 8 matrix Q�r�, and integrate
over c�r�. As a result, we obtain a functional integral over
Q with a free energy functional
F�Q� �
1
2

Z
Str

µ
pnQ2�r�

4t
2 ln

∑
2iH 1

Q�r�
2t

∏∂
dr ,

H � �p2 2 h2��2m 2 e 1 igL 1 iL1H
0, (8)

where H 0 � 2ih=�m 1 yt3 and t is the mean free
time.

The next standard step is to find the minimum of F�Q�
neglecting H 0. The minimum is reached at

Q � VLV , (9)

VV � 1, V1 � KVK . (The notations are the same as
in Ref. [3,12].) Expanding the functional F�Q� near the
minimum in the gradients of Q and in H 0 one comes to
the functional Fh�Q�, Eq. (3). This is exactly the way that
the s model, Eq. (3), was derived in Ref. [3]. However,
it has been mentioned that this s model is not valid in the
localized regime. What is wrong in the derivation?

It is not difficult to find that the functional F�Q� has
also another minimum. Performing the transformationeQ � exp�L1rh�Q exp�2L1rh� , (10)

we rewrite the functional F�Q�, Eq. (8) in terms of eQ. As
a result, the imaginary vector potential h is removed from
F and the minimum is achieved ateQ � VLV , (11)

which corresponds to Q varying in space.
Which of these two saddle points should be chosen?

The answer depends on the value of h. To clarify this ques-
tion we consider the correlation functions Y �r, r0; e, y� and
X�r, r0; e, y�, Eqs. (5) and (7). They can be written as
functional integrals over the supermatrices Q,

Y �X� �
pn2

4
�Q16

42 Q016
24 2 Q26

42 Q026
24 �Q , (12)

where the sign 1 (2) corresponds to the correlator Y �X�,
Q16 � Q11�r� 6 Q22�r�, Q26 � Q12�r� 6 Q21�r�, and
the matrices Q0 are taken at r0. The symbol �· · ·�Q stands
for averaging with the functional F�Q�, Eq. (8). To cal-
culate the integral in Eq. (12) let us use the transforma-
tion, Eq. (10), and take the saddle point, Eq. (11). Since
the combination of the supermatrices Q entering Eq. (12)
for the function Y is invariant under the transformation,
Eq. (10), h is gauged out in this function. Therefore, one
can use the standard results of the transfer-matrix approach
[12] developed for the Hermitian case. The final result for
the correlator Y �r, r0; e, y�,

Y �r, r0; e, y� � p`�r�d�y� , (13)

where r � jr 2 r0j, contains the function p`�r� charac-
terizing localization properties

p`�r� �
X
k

jf0k�r�j2jf0k�r0�j2d�e 2 ek� . (14)

In disordered wires, the function p`�r� describes the decay
of the wave functions at r ¿ Lc,
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p`�r� 	
1

4
p

pLc

µ
p2

8

∂2µ
4Lc

r

∂3�2

exp

µ
2

r
4Lc

∂
, (15)

where Lc is the localization length. For the unitary
ensemble it equals Lc � 2pnSD; S is the cross section.

In contrast, the vector potential h enters explicitly the
preexponential of the function X after making the transfor-
mation, Eq. (10). However, the dependence on h is simple
and calculations for X�r, r0; e, y� can be performed in the
same way as for Y �r, r0; e, y�, yielding

X�r, r0; e, y� � cosh�2hr�p`�r�d�y� . (16)

Equations (13) and (16) demonstrate that, provided one
may perform the transformation, Eq. (10), all eigenener-
gies remain real. However, the validity of this procedure
depends on the value of h. The function X�r, r0; e, y� does
not grow at infinity only if h , hc where

hc � �8Lc�21. (17)

At h . hc Eqs. (13) and (16) cannot be used because this
would correspond to growing wave functions, which are
forbidden for a closed geometry. This agrees with the ar-
guments of Ref. [1]. According to Ref. [1] one should use
at h . hc extended states having complex eigenenergies.

In the present formalism, the other saddle point, Eq. (9),
of the free energy F�Q� should be taken in the regime
h . hc. This leads to the s model in the form of Eq. (3).
Expecting that the eigenenergies become complex, we
determine their distribution function P�e, y�, Eq. (6). Fol-
lowing the transfer-matrix technique [12,13], we write the
function P�e, y� in the form

P�e, y� �
pn2S

4

Z
C�Q� �Q11

42 P11
24 2 Q21

42 P21
24 � dQ .

(18)

In Eq. (18), C�Q� is the partition function of the semi-
infinite wire; the matrix function P is the partition function
between the points r and r 0 multiplied by Q0C�Q0� and
integrated over r 0. As usual, proper differential equations
for C and P are derived from F�Q�, Eq. (3).

In order to carry out these calculations it is necessary
to choose a parametrization of the supermatrices Q. For
the non-Hermitian problem involved the parametrization
of Ref. [3] is most natural. For simplicity we consider
the unitary ensemble, where the supermatrices Q can be
parametrized in the form

Q � T �û�Q0T �û�, Q0 �

∑ cosŵ 2t3 sinŵ

2t3 sinŵ 2 cosŵ

∏
.

(19)

In Eqs. (19), the supermatrices T �û� contain not only real
variables û but also Grassmann variables. The diagonal
matrices ŵ and x̂ contain compact variables, u and w,
and noncompact ones, x and u1.
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The variables û and ŵ are not equivalent. For example,
neglecting the gradient terms in Eq. (3) one comes to the
0D free energy F�0�, containing the variables ŵ only:

F�0��ŵ� � h̃2�l1 2 iỹ�2h̃2�2 1 h̃2�l 1 ỹ�2h̃2�2 , (20)

where l1 � sinhx , l � sinw, h̃2 � 2h2L2
c, and ỹ �

2yL2
c�D. In contrast to a real magnetic field H, which

gradually suppresses and finally freezes out some degrees
of freedom with increasing H, the imaginary magnetic
field h shifts the saddle point as a whole. Noticeable
changes in behavior occur only at 6ỹ * 2h̃2, where
sinw 	 1.

Calculations performed in Ref. [3] for the 0D case show
that the variables û play a minor part in 0D. They do not en-
ter F�0��ŵ� but their role is even less pronounced due to the
singularity of the Jacobian at u, u1 ! 0. A detailed dis-
cussion of Ref. [3] leads to the conclusion that one should
replace the û-dependent part of the Jacobian by a constant
and put everywhere else û � 0. It is also interesting to
note that the free energy Fh�Q�, Eq. (3), is not invariant
against the replacement, Eq. (10). Using the parametriza-
tion, Eqs. (19), one obtains that this replacement leads
to the shift ũ � u 2 2irh, ũ1 � u1 2 2rh. This shift
changes the contour of the integration over 2p , u , p

in a complicated way, thus demonstrating the violation of
the “gauge symmetry.”

As in the 0D case, one should put everywhere u, u1 � 0
when deriving the transfer matrix equations. As a result,
differential equations for C and P contain l and l1 only:

Ĥ C � F�0�C, Ĥ P1 � Lc�il1 2 il�C ,

Ĥ �
1
J0

≠l�1 2 l2�J0≠l 1
1
J0

≠l1 �1 1 l2
1�J0≠l1 ,

(21)

where J0 � 1��l1 1 il�2.
Analysis of Eqs. (21) for hLc ¿ 1 is to some extent

similar to the one in the limit of high frequencies for the
conventional problem of localization [12]. We obtain

C 
 exp�2h̃�l1 1 iỹ�2h̃2�2 2 h̃�l 2 ỹ�2h̃2�2� ,

P1 
 C�2h̃ ,

which gives after substitution into Eq. (18)

P�e, y� 

n

4h̃2

Ω
1 , jỹj , h̃2 ,
0 , jỹj . h̃2 .

(22)

The form of the function P�e, y�, Eq. (22), is the same as
the 0D result of Refs. [2,3]. This result does not depend
on the dimensionality and corresponds to the elliptic law
for strongly non-Hermitian random matrices [15].

Analogous calculations for Y , Eqs. (4) and (5) yield

Y �r� 
 nb exp�22bjrj� , b �
q

�h2 2 y2�4Dh2� .

(23)
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FIG. 1. The joint distribution function of complex eigenvalues
P�e�, Eqs. (6), for the quasi-1D infinite wire (solid line) and the
0D case (dashed line), for h̃ � h̃c, 0.2, 0.25.

Analytical study of Eqs. (21) is hardly feasible at hLc �
1. To solve them numerically, we use the standard over-
relaxation method with Chebyshev acceleration. The re-
sults for the distribution P�e, y� are presented in Fig. 1
for several values of h̃. The lowest value of h̃ � 1�4

p
2

corresponds to the critical hc, Eq. (17). For comparison
we present the 0D result of Refs. [2,3].

The Q matrix does not vary in the space in 0D and the
coordinate-independent saddle point, Eq. (9), governs the
behavior. The same saddle point is relevant in 1D for
h . hc so that the curves for the 1D and 0D cases are
rather close to each other. The evolution of eigenvalue dis-
tribution with further decrease of h is drastically different
for the 1D and 0D cases. The 0D curve tends smoothly to
the d function nd�y� when h ! 0, whereas the 1D curve
changes abruptly to this expression at h � hc. This is be-
cause the space-varying saddle point, Eq. (11), becomes
essential at h , hc which follows from the behavior of
the correlator X, Eq. (16). In the region h . hc the states
are extended and the exponential decay of the correlation
function Y �r�, Eq. (23), is obtained after summation over
many states with different phase differences.

In conclusion, we studied the localization-delocalization
transition for non-Hermitian disordered systems with a di-
rection, Eq. (1), and broken time-reversal symmetry. We
found that the transition occurs due to an interplay between
two saddle points in the free energy F�Q�, which results
in the abrupt transition at the critical field h � hc. Below
this field, all eigenvalues are real and wave functions are
localized. Above the critical field the eigenvalues form a
broad distribution in the complex plane. We believe that
the abrupt transition found is quite natural for the original
problem of the vortex lines in the presence of columnar
defects [1]. Provided the geometry of the sample is closed
and it is infinitely long, vortex lines should abruptly change
their behavior, from being pinned by columns to becoming
oriented along the magnetic field.
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