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Two-Roton Bound State in the Fractional Quantum Hall Effect
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The true nature of the lowest-energy, long-wavelength neutral excitation of the fractional quantum Hall
effect has been a long outstanding problem. In this Letter, we establish that it is a two-roton bound state.

PACS numbers: 71.10.Pm, 73.40.Hm
The neutral excitations of the fractional quantum Hall
effect [1] (FQHE) have attracted considerable interest in
the past fifteen years since the initial work of Girvin, Mac-
Donald, and Platzman (GMP) [2] in which they used a
single mode approximation (SMA) to study the excitations
at Landau level filling n � 1�3. The long-wavelength
limit, the topic of the present Letter, is of particular inter-
est because of its relevance to Raman scattering experi-
ments [3–6]. In their original work, GMP raised the
question of whether the lowest-energy excitation at long
wavelengths was described correctly by the SMA or was
instead a two-roton excitation. Despite some further work
[7], this question has remained unresolved until now, both
because of the lack of a quantitative theory of the two-roton
excitation and because the system sizes on which exact-
diagonalization studies can be performed are too small to
shed meaningful light on long-wavelength excitations. We
wish to show that recent developments in the composite
fermion theory have made it possible to provide a defini-
tive answer to this question.

A composite fermion (CF) is the bound state of an elec-
tron and an even number of magnetic flux quanta (a flux
quantum is defined as f0 � hc�e), formed when electrons
confined to two dimensions are exposed to a strong mag-
netic field [8–10]. According to this theory, the interact-
ing electrons at the Landau level (LL) filling factor n � n�
�2pn 6 1�, n and p being integers, transform into weakly
interacting composite fermions at an effective filling n� �
n; the ground state corresponds to n filled CF Landau lev-
els (CF-LLs), and it is natural to expect that the neutral
excitations correspond to a particle-hole pair of composite
fermions, called the CF exciton (Fig. 1a) [11,12]. At the
minimum in its dispersion, the CF exciton is called the ro-
ton, borrowing the terminology from the 4He literature [2].

We will use the spherical geometry [13] below, which
considers N electrons on the surface of a sphere in the
presence of a radial magnetic field emanating from a mag-
netic monopole of strength Q, which corresponds to a to-
tal flux of 2Qf0 through the surface of the sphere. The
wave function for the CF ground state or the CF exciton at
n � n��2pn 1 1�, denoted by C, is constructed by anal-
ogy to the wave function of the corresponding electron
states at n � n, denoted by F:

C � PLLLF
2p
1 F . (1)
6 0031-9007�00�84(24)�5576(4)$15.00
Here F1 is the wave function of the fully occupied lowest
Landau level with monopole strength equal to �N 2 1��2,
given by

Q
j,k�ujyk 2 ukyj�, with uj � cos�uj�2� 3

exp�2ifj�2� and yj � sin�uj�2� exp�ifj�2�. PLLL de-
notes projection of the wave function into the lowest Lan-
dau level (LLL). The monopole strengths for F and C, q
and Q, respectively, are related by Q � q 1 p�N 2 1�.
For the ground state and the single exciton, the wave
functions F are completely determined by symmetry
(i.e., by fixing the total orbital angular momentum L,
which is preserved in going from F to C according to
the above rule), giving parameter-free wave functions C

for the ground and excited states of interacting electrons.
These have been found to be extremely accurate in tests
against exact diagonalization results available for small
systems [8,14], establishing the essential validity of the
CF exciton description for the neutral mode of the FQHE.
However, these small system studies do not test the
long-wavelength limit, and there are indications that the
single exciton might not be the lowest-energy excitation
in the long-wavelength limit. First, the agreement be-
tween the exact eigenenergy and the CF-exciton energy
worsens somewhat at small k, indicating the possibility
of new physics here. (The wave vector k is related to the
orbital angular momentum L in the spherical geometry as
k � L�R.) Second, PLLL projects away an increasingly
bigger fraction of the single-exciton wave function as
k ! 0 [11], eventually annihilating it completely. (This
happens precisely at L � 1 in the spherical geometry
[15].) Furthermore, in the thermodynamic limit, the en-
ergy of the single CF exciton in the k ! 0 limit is slightly
more than twice the energy of the CF roton, which raises
the question of whether the two-roton excitation wins
in the long-wavelength limit. These observations have
motivated us to look into the k ! 0 limit in more detail.

We start by constructing a wave function C for an exci-
tation consisting of two CF excitons, for which we appeal
to the analogy to the two-exciton state at n � n, which
contains two particle-hole pairs, as shown in Fig. 1. There
are certain technical difficulties that one encounters in go-
ing from F to C. First, the final wave function is not
automatically orthogonal to the single-exciton wave func-
tion or the ground state wave function at the same L. In
order to avoid the need for complicated Gram-Schmidt or-
thogonalization, we exploit the fortunate coincidence that
© 2000 The American Physical Society
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FIG. 1. Schematic diagrams for (a) the single-exciton state and (b) the two-exciton state, with well-defined L and M quantum
numbers. (We have chosen M � 0 with no loss of generality, since the energy is independent of M.) The figure in square brackets
shows schematically the Hartree-Fock Slater determinant obtained by promoting one or two electrons from the topmost occupied
Landau level to lowest unoccupied Landau level in single particle states indicated. At filling factor n, the topmost occupied (lowest
unoccupied) LL corresponds to the angular momentum l � q 1 n 2 1 (l � q 1 n) shell in the spherical geometry; other Landau
level shells are not shown for simplicity. The Wigner 3-j symbols are used in order to make a definite angular-momentum eigenstate.
The relative signs of the various terms in the sum follow from the antisymmetry requirement.
there is no single-exciton state at L � 1 in the spherical
geometry [15]. Therefore, we construct the two-roton
wave function at L � 1 and compare it with the single
exciton at L � 2, both of which correspond to k ! 0 in
the thermodynamic limit. The second difficulty is that the
wave function of the two exciton is not unique at L � 1.
A large number of combinations of two single excitons
give a state at L � 1: one could combine either two single
excitons with the same angular momenta or angular mo-
menta differing by unity. We have discovered in our calcu-
lations that, in the former case, the LLL projection operator
annihilates C. Therefore, we construct F

TE
q;L,M , the two-

exciton state at q with quantum numbers L � 1 and M � 0,
from two single excitons at LSE and LSE 1 1 as shown in
Fig. 1. The two-CF-exciton state at Q � q 1 p�N 2 1�,
C

TE
Q;L,M , is then constructed as

CTE
Q;L,M � PLLLF

2p
1 FTE

q;L,M . (2)
One of the most challenging aspects of the desired com-
putation is that the two-exciton CF state requires a very
large number of Slater determinants; the number increases
as N3, N being the number of electrons. For efficient
Monte Carlo simulations we have devised a determinant-
updating technique, generalizing the technique in Ref.
[16]. The updating technique begins with the observation
that the constituent Slater determinants of the two-exciton
state differ from the ground state only in two rows. To
elaborate on our updating method, first let �Y �gs

a,j denote an
element of the matrix for the Slater determinant describing
the ground state at q, i.e., F

gs
q . Here, a collectively indi-

cates orbital quantum numbers. Also, let F
m0,m02MSE
m,m1MSE

�q, n�
be the Hartree-Fock wavefunction obtained by promoting
two composite fermions in the m and m0 state of the top-
most occupied CF-LL [�n 2 1�th CF-LL] to the m 1 MSE
and m0 2 MSE state of the lowest unoccupied CF-LL (nth
CF-LL) which is depicted as the figure enclosed by square
brackets in Fig. 1b. Then, F

m0,m02MSE
m,m1MSE

�q, n� is given by
Fgs
q

∑µX
j

Yq,n,m1MSE�Vj� �Y �
gs
�q,n21,m�,j

∂
3

µX
j

Yq,n,m02MSE �Vj� �Y �
gs
�q,n21,m0�,j

∂

2

µX
j

Yq,n,m1MSE�Vj� �Y �
gs
�q,n21,m0�,j

∂
3

µX
j

Yq,n,m02MSE�Vj� �Y �
gs
�q,n21,m�,j

∂∏
, (3)
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where �Y �
gs

is the transpose of the inverse matrix of �Y �gs.
Equation (3) reduces the number of operations by approxi-
mately a factor of N , compared to that when the Slater
determinants are computed separately. Then, using parallel
computing techniques, such as message-passing interface,
which reduces the (wall) computing time by another factor
of 30 with as many as 64 processors, we are able to study
systems with up to N � 30 particles, which will be crucial
in what follows.

The energies of the various two-exciton states (labeled
by LSE, or kSE � LSE�R) are now evaluated for the pure
Coulomb interaction by the Monte Carlo method, treating
the LLL projection operator in the standard method [14].
The plot in Fig. 2 explicitly confirms that the lowest en-
ergy for each N is obtained by combining two rotons. In
principle, the energy of the two-roton state could be fur-
ther lowered by allowing it to mix with other two-exciton
states, but this possibility will not be considered here. We
have compared the energy of the two-roton state against ex-
act diagonalization studies to ascertain the validity of the
wave function. For N � 8 and 10, energies per particle
for the L � 1 two-roton states in the composite fermion
theory are 20.417 440�46� and 20.416 551�59� in units of
e2�el0, which are approximately 0.2% larger than the ex-
act energies (20.418 324 for N � 8 and 20.417 516 for
N � 10). Measured from the ground state, the CF energy
at L � 1 is approximately 5% higher than the exact value.

Figure 3 shows the evolution of the energies of the
single exciton and the two-roton bound state as a func-
tion of N . This plot demonstrates the principal result of
the work, namely, that the lowest energy excitation in the
long-wavelength limit is the two-roton state. We note here
that, in the long-wavelength limit, the single CF exciton is
identical to the SMA mode [11], consistent with the fact
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FIG. 2. The energies of various two-exciton states as a function
of the wave vector of two constituent single excitons, which is
denoted by kSE. Here the interaction between electrons is taken
as the Coulomb interaction. Comparison with twice the single-
exciton dispersion curve (dashed line) shows that the lowest-
energy two-exciton state is obtained by combining two rotons.
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in Fig. 3 that the energy of the single exciton approaches
0.15e2�el0 in the thermodynamic limit, which is also the
k � 0 energy of the SMA mode [2]. The two-roton state
has 10% lower energy.

We next come to the relevance of this work to Raman
scattering experiment. Our theoretical understanding of
the scattering cross section of the FQHE gap modes ob-
served in Raman scattering is rather unsatisfactory, even
ignoring the complications introduced by the resonant na-
ture of Raman scattering [7,17]. However, as noted in
the early literature [3], there is reason to expect that the
two-roton mode might couple more strongly to light in Ra-
man scattering than the single-exciton mode: the scattering
cross section for the single exciton vanishes rapidly with
the wave vector as a result of Kohn’s theorem, but there
is no reason for it to vanish for the two-roton mode. Also
note that, while the two-exciton states form a continuum,
the two-roton states provide a peak in the density of states
at the lower edge of the continuum.

In a detailed study, Scarola et al. [12] have found that,
after incorporating the finite thickness effect, the energy
of the single CF roton is in excellent agreement with
experiment, but the energy of the mode observed in the
long-wavelength limit is approximately 30% below the
theoretical energy of the single exciton. In light of the above
discussion, it is natural to suggest that a part of this discrep-
ancy might originate from a misassignment of the nature of
the long-wavelength mode. In order to make contact with
experiment at a quantitative level, we have considered a
square quantum well (SQW) of width 33 nm, as appro-
priate for the experiment of Kang et al. [18]. The trans-
verse wave function has been calculated in a self-consistent
local density approximation, as a function of the two-
dimensional electron density, following which the inte-
gration over the transverse coordinate has been performed
explicitly to obtain an effective two-dimensional interac-
tion between electrons [19,20]. This, in turn, is used to
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FIG. 3. The Coulomb energies as a function of 1�N for
the single exciton and the two-roton bound state in the long-
wavelength limit.
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FIG. 4. Comparison between the experimental data (stars)
from Kang et al. [18] and the theoretical estimation of two-
roton bound state energy (dashed line). Theoretical estimates
are obtained by considering Landau level mixing as well as
finite thickness effects.

compute the energy of the two-roton bound state. The
thermodynamic limit is obtained at each density. The ex-
citation energies are further reduced due to Landau level
mixing, which was estimated by Scarola et al. as a function
of the density for the single roton at n � 1�3, following
earlier work [21]. Assuming that the percent reduction of
the two-roton energy is approximately the same (approxi-
mately 5% for typical densities), we have obtained a real-
istic estimate for the energy of the two-roton mode, plotted
(dashed line) in Fig. 4 along with the experimentally deter-
mined energies [18] of the long-wavelength mode (stars).
The agreement is on the level of 20% or better, which
we consider satisfactory in view of various approximations
and the neglect of disorder.

Our calculations also show a level crossing between
the two-roton and the single-exciton modes at approxi-
mately r � 3.0 3 1011 cm22 for the SQW sample of
width 33 nm. If only the two-roton mode is observable in
Raman scattering, this would imply that the Raman peak
ought to disappear at sufficiently large densities. The
actual density at which the level crossing is predicted may
be quite a sensitive function of the various approximations
of the theory, however.

In summary, we have proved that at n � 1�3 the lowest-
energy excitation in the long-wavelength limit is not a
single exciton but rather a two-roton mode. The results of
Ref. [12] show that much of this physics is to be expected
at other filling factors as well, since there also the k ! 0
limit of the single-exciton energy is larger than twice the
single roton energy. Calculations are in progress to inves-
tigate this issue further.
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