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Study of Phonon Dispersion in Silicon and Germanium at Long Wavelengths
Using Picosecond Ultrasonics
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We have studied the dispersion of long wavelength longitudinal phonons in silicon and germanium
using ultrasonic techniques. For long wavelengths, the acoustic phonon dispersion relation is of the form
v�k� � ck 2 gk3, where c is the speed of sound and g measures the lowest-order phonon dispersion.
By sending an ultrasonic pulse of length a few hundred angstroms into a crystal and measuring the
change of the pulse shape with propagation distance, we are able to determine the parameter g. The
results are compared with lattice dynamics models.

PACS numbers: 63.20.–e
The dispersion of phonons in crystals has been stud-
ied by a number of methods, including Raman, x-ray, and
neutron scattering [1,2]. While these techniques can deter-
mine the dispersion relation over the entire Brillouin zone,
they have limited accuracy for long wavelength acoustic
phonons. These phonons are of special interest because
their dispersion is sensitive to the long range part of the
interatomic potential [3]. They have been studied, for ex-
ample, by energy-selective phonon focusing experiments
[4,5]. In this Letter we will describe how the picosecond
ultrasonics technique [6] can be used to measure the dis-
persion of longitudinal acoustic phonons.

The propagation of a disturbance along a chain of par-
ticles was first discussed qualitatively by Baden-Powell in
1841 [7]. Later Hamilton [8,9] worked on this problem
and obtained the exact solution for the motion of a one-
dimensional chain of particles each of mass M, with in-
terparticle spacing a, and connected by nearest-neighbor
springs of strength b. Hamilton considered a situation in
which at time zero all atoms were at rest at their equilib-
rium positions, except for a single particle (the 0th par-
ticle) which was given a displacement u0. He showed that
at time t the displacement un�t� of the nth particle in the
chain was

un�t� � u0J2n�v0t� , (1)

where v0 � �4b�M�1�2. For large n, the displacement
is extremely small until a time 2n�v0 has elapsed. This
is the time for sound to travel along the chain to the nth
particle; the sound velocity c is equal to �ba2�M�1�2.
After this time the particle oscillates with an increasing
frequency. Figure 1 shows the displacement of the 150th
particle along the chain as a function of time.

In the long wavelength limit, acoustic phonons have a
linear dispersion relation v � ck. If a pulse disturbance
is composed entirely of components having wave number
sufficiently small that the approximation v � ck is valid,
then the pulse will propagate without any change in shape.
The oscillations that are seen in Fig. 1 are a consequence
of phonon dispersion; i.e., they result from components of
the disturbance for which the phonon frequency v is not
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well approximated by ck. The frequency of the oscilla-
tions is determined by the strength of the dispersion and
by the distance that the pulse has traveled. As an example,
we note that for small k the dispersion relation can be
approximated by the form

v�k� � ck 2 gk3 1 . . . , (2)

where the coefficient g will be referred to as the dispersion
parameter. Based on this form, it is straightforward to
show that the frequency V of the oscillations that result
from dispersion is given by the formula

V � c2
r

g

3gx
, (3)

where x is the distance that the pulse has traveled, and
g is the time measured from the front of the pulse, i.e.,

FIG. 1. (a) In a one-dimensional lattice the atom 0 is disturbed
at t � 0. (b) Displacement u150 of the 150th atom as a function
of time. The dashed vertical line indicates the arrival time of
a disturbance traveling at the speed of sound. The oscillations
after the main pulse arise from phonon dispersion.
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t � t 2 x�c. This formula holds provided that x�c ¿
t ¿ V21. A measurement of the frequency of the oscil-
lations can be used to determine the value of the dispersion
parameter g.

Suppose that a pulse of spatial width Dx is launched into
a crystal. This pulse will contain components with wave
number of the order of 1�Dx. Hence, the different com-
ponents will have phase velocities that vary by a fraction
of the order of g�c�Dx�2. After the pulse has traveled a
total distance x, dispersion will have broadened the pulse
by an amount xg�c�Dx�2. Thus, in order for dispersion to
significantly change the pulse shape, it is necessary that
xg�c�Dx�2 . Dx; i.e., the propagation distance has to
exceed

x �
c�Dx�3

g
. (4)

For pulses generated in conventional ultrasonic experi-
ments at 5 MHz, for example, Dx is of the order of 0.1 cm.
The order of magnitude of g is 10211 cm3 s21, and so such
a pulse would have to travel about 109 km in order for dis-
persion to modify the pulse shape. To observe the effect of
phonon dispersion, it is necessary to use very short sound
pulses. By means of picosecond ultrasonic techniques, it is
now possible to generate and detect sound pulses as short
as 100 Å. For such pulses, the distance x can be on the
scale of millimeters or even less.

The experimental setup is shown schematically in
Fig. 2. The sample is a wafer of Si or Ge with both faces
highly polished. An Al film of thickness 240 to 300 Å
is deposited on one side of the wafer, and is used as an
ultrasonic transducer. An optical pump pulse of duration
200 fs is focused onto an area of the Al film, and abruptly
raises the temperature by a few K. This sets up a thermal
stress, and a longitudinal acoustic pulse with a spectrum
that peaks at a frequency of about 120 GHz is launched
into the sample. This acoustic pulse travels across the crys-
tal, and is reflected with a sign change at the far surface.

FIG. 2. Schematic diagram of the experiment for studying the
phonon dispersion in crystalline solids. (a) A light pulse is
absorbed in the Al film and an acoustic pulse is generated.
(b) The pulse propagates across the crystal and is reflected at
the far surface. (c) The pulse returns to the Al transducer with
a shape modified by dispersion, and is then detected by a probe
light pulse.
When the pulse reenters the Al transducer film, it causes
a small change DR in the optical reflectivity of the film.
By using a time-delayed optical probe pulse to measure
DR�t� as a function of time t, we can measure the shape
of the acoustic echo.

A Ti:sapphire mode-locked laser is employed as the op-
tical source. The wavelength is 800 nm, and the repetition
rate is 75.5 MHz (time between pulses of 13.25 ns). Since
the change of reflectivity is very small [DR�t��R � 1025],
lock-in techniques are used to improve signal to noise. The
travel time for the first acoustic echo is usually in the range
100 ns to several ms, and it would be inconvenient to pro-
duce a probe pulse with this delay through the use of a
conventional optical path. Instead, as a probe pulse we
have used a later pulse from the mode-locked laser which
has been given a further small delay by means of a short
adjustable optical path. For example, to achieve a delay of
300 ns, we use the 22nd pulse (delayed by 291.5 ns) with
an extra path delay of 8.5 ns.

As representative data, Fig. 3 shows the change in re-
flectivity DR�t� arising from an acoustic echo in a [110]
Ge sample of thickness 0.99 mm. The oscillations in the
tail of the pulse are the features due to the dispersion as
described above. The open squares are the experimental
data points and the solid line is a fit to the data (see de-
scription below). The data shown in Fig. 3 were taken at
a temperature of 25 K. At higher temperatures the ampli-
tude of the echo decreases. We assume that this is because
of the attenuation arising from the anharmonic interactions
with thermal phonons. The echo also shifts to later times
as the temperature is raised due to a decrease in the sound
velocity. To obtain the data shown in Fig. 3 light pulses of
energy 0.2 nJ were used to generate the acoustic pulses. A
small variation in the pulse energy changes the amplitude
of the echo, but does not change the echo shape. But when
the pulse energy is increased above about 0.4 nJ, there is

FIG. 3. Picosecond ultrasonic data (open squares) for a longi-
tudinal acoustic pulse propagating in the �110� direction in Ge
at 25 K. The oscillations in the tail of the pulse are due to
phonon dispersion. The solid curve is a simulation as described
in the text.
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TABLE I. A summary of the results obtained for the dispersion of silicon and germanium. The thickness of the sample is d, the
sound velocity is c, and g is the dispersion parameter defined in Eq. (2). The results for g are compared with g obtained from
a model with nearest-neighbor forces due to Hsieh (Ref. [14]), from a model by Tamura with interactions out to eighth-nearest
neighbors (Ref. [5]), and the adiabatic bond charge model of Weber (Ref. [19]).

d c gExp gHsieh gTamura gWeber

Sample (mm) (105 cm�s) (10211 cm3 s21) (10211 cm3 s21) (10211 cm3 s21) (10211 cm3 s21)

Si [100] 2.00 8.48 1.80 0.65 1.07 2.20
Si [110] 5.04 9.18 8.45 1.61 6.55 8.00
Si [111] 5.00 9.40 2.55 1.09 3.42 3.52

Ge [100] 0.99 4.97 0.85 0.41 0.85 1.50
Ge [110] 0.99 5.46 5.55 1.01 4.63 5.52
Ge [111] 1.04 5.62 1.05 0.68 2.13 2.46
a significant change in the echo shape [10]. This is pre-
sumed to be a result of nonlinear elastic effects. In the
experiments reported here, we have used pulse energies
small enough that the nonlinear effects are negligible.

To determine the dispersion parameter from the data
simulations of the echo shape were performed. These
simulations involved a calculation of the shape of the
acoustic pulse generated by the Al film, a determination of
the change in the shape of this pulse after making a round
trip through the sample that results from the dispersion,
and calculation of the change in optical reflectivity DR�t�
that takes place when the acoustic pulse reenters the Al
film. The simulation for the generation and detection of
the acoustic pulses is based on the theory given by Thom-
sen et al. [6]. To include the dispersion and attenuation
[11] of the phonons, we have calculated the change of
the pulse shape by taking the Fourier transform of the
generated pulse, modifying it with a frequency-dependent
amplitude and phase, and then transforming it back to
the time domain. The simulations use the known density
and sound velocity of Al, Ge, and Si [12]. The adjustable
parameters are the dispersion g, the thickness dAl of the
Al film, the thickness d of the sample [13], the attenuation
a in the sample, and the optical constants of the Al film
(i.e., the dielectric constant and piezo-optic coefficients).
Of these adjustable parameters, only g has a significant
effect on the frequency of the oscillations after the arrival
of the main echo. Adjustment of the other parameters is
important in order to obtain a good fit to the front of the
pulse and to the rate at which the oscillations after the
pulse decrease in amplitude.

Table I gives the results that we have obtained for the
dispersion parameter g. The uncertainty in these values
of g is typically 65%. For both Si and Ge, the largest g

value is found for the [110] direction and the smallest for
the [100]. We list in Table I values of g that we have calcu-
lated using different models of lattice dynamics of Si and
Ge taken from the literature. We first make a comparison
with the model of Hsieh [14]. In this model the interac-
tions are restricted to the nearest neighbors. The model
gives g values that are all significantly less than what we
have measured. In addition, the model gives g values that
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vary with direction much less than is found experimentally.
For example, in Ge the experiment gives g110�g100 � 6.5,
whereas the Hsieh model gives 2.5 for this ratio. A more
elaborate model has been constructed by Tamura [5]. This
model uses 31 force constants that describe interactions
out to eighth-nearest neighbors. The model gives an ex-
cellent fit to the dispersion curves as measured by neutron
scattering [15–18]. The agreement with the experimental
g is generally much better than for the Hsieh model, pre-
sumably because of the inclusion of longer range interac-
tions. However, the degree of agreement varies markedly
with direction and from Si to Ge, with no obvious pattern.
The third model is the adiabatic bond-charge model due to
Weber [19]. This provides the best agreement with the ex-
perimental values, but substantially overestimates the dis-
persion in the [100] and [111] directions for both Si and
Ge. Models such as the bond-charge model were origi-
nally introduced to explain the anomalous flattening of
the transverse acoustic branches at large wave vectors. It
will be interesting to consider how such models need to
be modified so as to give the correct dispersion for long
wavelength acoustic phonons, while still giving the disper-
sion of the short wavelength transverse phonons correctly.

In summary, we have described how the picosecond ul-
trasonics technique can be used to measure the disper-
sion of longitudinal acoustic phonons of long wavelengths.
These measurements provide a new test of lattice dynami-
cal models.

We thank C. Elbaum and R. O. Pohl for providing some
of the Ge and Si single crystals. This work was supported
in part by the U.S. Department of Energy through Grant
No. DE-FG03-ER45267.

[1] N. W. Ashcroft and N. D. Mermin, Solid State Physics
(Saunders College, Philadelphia, 1976).

[2] H. Bilz and W. Kress, in Phonon Dispersion Relations in
Insulators, edited by M. Cardona and P. Fulde (Springer,
New York, 1979).

[3] M. P. Kemoklidze and L. P. Pitaevskii, Sov. Phys. JETP 32,
1183 (1971).



VOLUME 84, NUMBER 24 P H Y S I C A L R E V I E W L E T T E R S 12 JUNE 2000
[4] W. Dietsche, G. A. Northrop, and J. P. Wolfe, Phys. Rev.
Lett. 47, 660 (1981).

[5] Shin-ichiro Tamura, Phys. Rev. B 28, 897 (1983).
[6] C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, Phys.

Rev. B 34, 4129 (1986).
[7] J. Baden-Powell, View of the Undulatory Theory as Applied

to the Dispersion of Light (J. W. Parker, London, 1841).
[8] Sir W. R. Hamilton, Mathematical Papers (Cambridge Uni-

versity Press, London and New York, 1940).
[9] A. Maradudin, E. W. Montroll, G. H. Weiss, and I. P. Ipa-

tova, The Theory of Lattice Dynamics in the Harmonic
Approximation (Academic Press, New York and London,
1971).

[10] Hsin-Yi Hao and Humphrey J. Maris, Physica (Amsterdam)
263–264B, 670 (1999).

[11] The attenuation at low temperature (T # 40 K) was taken
to vary as a0v

2, where a0 is constant independent of tem-
perature. Inclusion of a frequency-dependent attenuation
in the simulation is necessary to cause the oscillations in
the tail to damp out at the rate found in the experiment.
We find that a quadratic dependency gives a good fit to the
experimental data (see Fig. 3). It is possible that this appar-
ent attenuation does not occur in the bulk of the sample,
but instead arises from the roughness of the sample sur-
faces. We have not yet found the theory to fully describe
the phonon attenuation at this frequency and temperature
range.

[12] H. J. McSkimin, J. Appl. Phys. 24, 988 (1953).
[13] The thickness must be treated as an adjustable parameter

because it cannot be measured with sufficient accuracy by
conventional means.

[14] Y-C. Hsieh, J. Chem. Phys. 22, 306 (1954).
[15] G. Dolling, Inelastic Scattering of Neutrons in Solids and

Liquids (LAEA, Vienna, 1963), Vol. I, p. 37.
[16] G. Nilsson and G. Nelin, Phys. Rev. B 3, 364 (1971).
[17] G. Nelin and G. Nilsson, Phys. Rev. B 5, 3151 (1972).
[18] G. Nilsson and G. Nelin, Phys. Rev. B 6, 3777 (1972).
[19] W. Weber, Phys. Rev. B 15, 4789 (1977).
5559


