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Mechanism for Negative Poisson Ratios over the a-b Transition of Cristobalite, SiO2:
A Molecular-Dynamics Study
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The adiabatic elastic constants (Cij) of cristobalite have been evaluated successfully over the tempera-
ture range of 300–1800 K using the molecular-dynamics method with a fluctuation formula. Cristobalite
shows a negative Poisson ratio over this temperature range. However, the mechanisms differ between the
a and b phases. In the cubic b phase, C44 exhibits a value extremely close to C11 rather than C12, in
contrast to the Cauchy relation. This predicts a remarkable property that the longitudinal and transverse
velocities coincide for the acoustic waves propagating along the �100� direction.

PACS numbers: 62.20.Dc, 62.65.+k, 64.70.Kb
Because of its extremely low expansion coefficient and
high thermal shock resistance, vitreous SiO2, such as
fused quartz, is widely employed for technological appli-
cations which require low sensitivity to thermal changes.
Cristobalite, a low-density SiO2 polymorph, is particularly
known to appear in powdery form over the surface of
vitreous SiO2, which is called “devitrification,” when kept
below the melting temperature [1]. Devitrification limits
the high-temperature performance of vitreous SiO2. In par-
ticular, the phase transformation to the high-temperature
(b) form of cristobalite can result in potential mechanical
failure, while cooling through crystallographic transition
to the low-temperature (a) form. In order to properly
assess the mechanical degradation of vitreous SiO2 under
high-temperature conditions, it is necessary to understand
the elastic behavior of cristobalite over a wide temperature
range. However, there is little information available on
the subject because the cubic b form of single-crystalline
cristobalite is difficult to obtain for experimental study
due to the large volume discontinuity involved in the
phase transition from the tetragonal a phase.

Yeganeh-Haeri et al. [2] measured the single-crystal
elastic stiffness constants of a cristobalite under ambient
conditions using laser Brillouin spectroscopy, and reported
that a cristobalite exhibits a negative Poisson ratio, con-
tracting laterally when compressed and expanding laterally
when stretched. The Voigt-Reuss-Hill averaged values
[3] for the single-phased aggregate of a cristobalite,
which is the only known isotropic negative Poisson ratio
material to our knowledge, yield a Poisson ratio of 20.16.
Theoretical analyses with first-principle calculations and
classical interatomic potentials on the negative Poisson
ratio were performed [4], but were restricted only to the
particular temperature or to the assumed lattice structure
for a cristobalite.

Molecular-dynamics (MD) calculations of the a and b

phases of cristobalite have been performed. We started
from the model system of a cristobalite [5], and heated the
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system continuously, which involved the phase transition
to b cristobalite. The fluctuation formula for the internal
stress tensor [6,7] was used to obtain a complete set of elas-
tic constants over a wide temperature range. We have em-
ployed the nonempirical pairwise potentials of Tsuneyuki
et al. (TTAM) [8] and Beest et al. (BKS) [9] derived from
the cluster calculations of potential energy surfaces using
the ab initio method. These potentials have been found
to adequately describe a wide scope of properties of SiO2
through numerous previous studies. The number of atoms
in the system is 576 (containing 48 unit cells), and we
use periodic boundary conditions. The Nosé-Hoover [10]
and Parrinello-Rahman [11] isothermal-isobaric ensemble
is applied to calculate the structures of the reference states,
and then the adiabatic elastic constants at each temperature
are calculated within the constant-volume (both size and
shape are held constant) and constant-energy ensemble for
1.28–2.88 ns. The integration time step in all MD simu-
lations is 2 fs. To calculate the elastic constants, the MD
method with the fluctuation formula exceeds other meth-
ods such as harmonic lattice dynamics because the results
contain the anharmonic and finite temperature effects in an
exact manner [7,12].

The structure of a cristobalite is well described (see,
for example, Ref. [5]); however, there is still discussion
on the b phase. The present MD results of b cristobalite
show that the time averaged (over 20 ps) crystal structure
coincides with the “ideal” model [13], which requires the
Si-O bond length to be 1.54 Å and a Si-O-Si bond angle
of 180±. However, according to the MD results of ra-
dial distribution functions, angle distribution functions,
and temporal structures for b cristobalite, the Si-O bond
length of the b phase is almost equal to that of the a

phase (ca. 1.61 Å) and the Si-O-Si bond angle never shows
180±. Moreover, it is shown in Fig. 1 that the mean-square
displacements (MSD), in particular of oxygen atoms, in-
crease significantly above the transition temperature [about
1000–1050 K, as compared to the experimental value of
© 2000 The American Physical Society



VOLUME 84, NUMBER 24 P H Y S I C A L R E V I E W L E T T E R S 12 JUNE 2000
FIG. 1. Evolution with temperature of the mean-square dis-
placements of the oxygen (solid square) and silicon (open tri-
angle) atoms. Their origins are set in the time-averaged (over
40 ps) atomic sites obtained from the precalculations using the
MD method with the TTAM potential.

540 K (this temperature is dependent on the quality of the
specimen)], and the square root value of the MSD of oxy-
gen atoms almost coincides with the radius of the random
precession around the Si-Si axis. This confirms the predic-
tion by Swainson and Dove [14] that the sites of oxygen
atoms in b cristobalite are dynamically disordered and the
framework of SiO4 tetrahedra shows a twist with a bend at
the corner-linked points.

The adiabatic elastic stiffness constants (Cij) of a cristo-
balite at 300 K using the TTAM and BKS potentials were
evaluated. The Cij values for the TTAM/BKS potential
are (in GPa) C11 � 48.1�64.5 (59.4), C33 � 35.3�37.9
(42.4), C44 � 57.8�69.5 (67.2), C66 � 19.8�27.6 (25.7),
C12 � 5.6�6.5 (3.8), and C13 2 4.2� 2 0.7 (24.4),
respectively, where the numbers in parentheses are the
experimental values [2]. Comparing the two potentials,
the TTAM potential is found to better describe the overall
relative values of elastic constants, which are important for
deriving the Poisson ratio. Figure 2 shows the temperature
dependence of the Cij’s of cristobalite using the TTAM
potential. This result concerning the elastic constants
over a wide temperature range, including the transition
and b-phase regions, has been reported for the first time.

In Fig. 2, every component of the elastic constants
changes sharply at 1000–1050 K, which clearly indicates
the phase transition occurs in this temperature region. In
the lower temperature region (a phase) of 300-1000 K,
every component of the elastic constants tends to decrease.
In particular, it is noted that C33 decreases significantly,
which is caused by the relaxation of the twisted framework
structure with corner-sharing SiO4 tetrahedra along the
crystallographic c direction. Following this sharp decrease
of C33, the shear component of C44 begins to decrease,
triggering the phase transition. After the transition, C33
increases significantly as the temperature increases, thus
recovering the strength in this direction. We confirm that
FIG. 2. Evolution with temperature of the adiabatic elastic
stiffness constants of cristobalite. The symmetry of the tetrago-
nal a form leads to six independent components; C11 (open
circle), C33 (solid circle), C44 (solid triangle), C66 (open tri-
angle), C12 (open square), and C13 (solid square). In the b
phase, they are reduced to three independent components, C11,
C44, and C12, when the system is rotated through 45± about the
c axis according to the crystallographic axes of the b form. Dur-
ing this conversion, C11, C66, and C12 (open plots) shift along the
arrows, and thus coincide with C33, C44, and C13 (solid plots),
respectively, as indicated in the parentheses.

the b phase, compared to the a phase, becomes mechani-
cally stable again and all of the elastic constants tend to
increase as the temperature increases. Similar behavior
can be observed in another common SiO2 polymorph,
quartz, according to the experimental results [15].

The Voigt-Reuss-Hill averages of the bulk modulus (K)
and the shear modulus (G) of cristobalite were evaluated
from the elastic constants to derive Poisson ratios. Figure 3
shows K and G, and the Poisson ratios (n) of the single-
phased aggregate of cristobalite at various temperatures
for the TTAM potential, which are derived by using the
following formula for an isotropic solid:

n �
3K 2 2G

2�3K 1 G�
. (1)

The Poisson ratio varies extensively with temperature and
takes a minimum value at around the transition point. Fur-
thermore, it is found that it has never exhibited a posi-
tive value in the entire temperature range of 300–1800 K.
The sign of a Poisson ratio is determined by the relation-
ship between K and G, as seen in Eq. (1). Most common
materials have a positive Poisson ratio, and especially in
rubbery materials it approaches the isotropic upper limit,
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FIG. 3. Temperature dependence of the Voigt-Reuss-Hill aver-
ages of the bulk and shear moduli (a), and the Poisson ratio (b)
of cristobalite for the single-phased aggregate.

10.5. They readily undergo shear deformation but resist
volumetric (bulk) deformation, so G ø K . Cristobalite,
one of the so-called “antirubbery” materials, is difficult to
shear but easy to deform volumetrically (G . K) and the
Poisson ratio consequently exhibits a negative value [16].
According to the measurements [2], the shear modulus of
a cristobalite is approximately 2.4 times the bulk modulus
under ambient conditions. This experimental fact is ade-
quately confirmed in our simulation results obtained for
both TTAM and BKS potentials.

The directional property of a Poisson ratio is inves-
tigated by the quotient of lateral to longitudinal strain
nij � 2Sij�Sii �i, j � 1, 2, 3� (where Sij stands for the
elastic compliance constants, the inverse of Cij) for all
possible orientations of the coordinate system relative to
the crystallographic axes.

In a cristobalite at 300 K, the Poisson ratio exhibits
prominent anisotropy. Over all crystallographic directions
its magnitude ranges from 10.20 to 20.59. However, its
average becomes a negative value. The negative maximum
value of n23 � 20.59 is obtained by rotating Sij through
approximately 42± from the b axis about the a axis. In a

cristobalite, this is the principal direction which shows a
negative value of the Poisson ratio. This negative value re-
sults from the typical framework structure of a cristobalite
which consists of uniform sixfold rings [Fig. 4(a)]. These
5550
FIG. 4 (color). Microcelluar clusters composed of four sixfold
rings in cristobalite; (a) a form at 300 K and (b) an example of
the instantaneous b form at 1800 K. The oxygen and silicon
atoms are represented by the red and orange spheres, respec-
tively. Negative Poisson ratios arise when these inverted cells
fold and/or unfold along the arrows under uniaxial stress. The
bound boxes (dotted lines) are displayed for an eye guide, not
indicating the unit cells.

rings have an inverted characteristic similar to reentrant
honeycombs, the typical model which induces a negative
Poisson ratio.

In b cristobalite at 1800 K, the magnitude of the Pois-
son ratio ranges from 10.16 to 20.28, and the rotation of
Sij about the c axis produces a maximum n12 � 20.28
at 45± from the a axis. The behavior of the microcellu-
lar clusters varies between the a and b phases, since the
preferred directions obviously differ from each other when
a negative Poisson ratio arises. The framework of the b

phase consists of sixfold rings as found in the a phase, and
we now consider the corresponding microcellular clusters
to be composed of four of these rings [Fig. 4(b)]. These
shapes alter dynamically because of the thermal motions
of SiO4 tetrahedra. However, the flexible Si-O-Si link-
ages, which bridge tetrahedral units, are kept twisting at
each instant, and the framework structure of the b phase
consequently has an inverted characteristic similar to re-
entrant foams [16]. Negative Poisson ratios arise from the
folding or unfolding of these inverted cells.

A set of elastic constants for the b phase, which is
obtained by heating the a phase with the MD method,
reduces to three independent components C11, C44, and
C12 when the system is rotated through 45± about the
c axis. This crystal system exhibits a cubic symmetry,
and those values are (in GPa) C11 � 42.0, C44 � 40.8,
and C12 � 5.8 for the TTAM potential, and C11 � 49.6,
C44 � 49.7, and C12 � 5.7 for the BKS potential, respec-
tively. It is noteworthy that the value of C11 is found to
be unusually close to that of C44, and this means that the
velocities of one longitudinal and two transverse acoustic
waves coincide along the �100� direction (Fig. 5). This
fact has never been observed in ordinary crystals, and is
deeply related to the occurrence of the negative Poisson ra-
tio microscopically. A transverse wave has a displacement
component perpendicular to the propagation direction,
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FIG. 5. Variation of elastic wave velocities with respect to the
crystallographic direction in b cristobalite at 1800 K for the
TTAM potential. The velocities evaluated from the Cij’s are pro-
jected on the (001) plane, and L (solid curve), T1 (dash-dotted
curve), and T2 (dotted curve) indicate the longitudinal, in-plane
transverse, and perpendicular-to-plane transverse waves, respec-
tively. In particular, the velocities in the �100� direction can
be represented by �C11�r�1�2 [L] and �C44�r�1�2 [T1 and T2],
where r denotes density.

and thus leads to no volumetric (bulk) change. On the
other hand, a longitudinal wave induces a volumetric
change as the wave propagates. Since the bulk modulus is
larger in ordinary crystals, the longitudinal wave generally
propagates faster. However, in the present case, the bulk
modulus is unusually small compared with the shear
modulus, and thus the velocity of the longitudinal wave
becomes almost equal to that of the transverse wave in
the specific directions according to the symmetry of the
system. Microscopically, we predict that the softening
of C11 occurs due to the cooperative motions of oxygen
atoms at the corner-linked points of SiO4 tetrahedra. This
corresponds to the results obtained with the inelastic neu-
tron scattering of the powder specimen of b cristobalite
[17], which suggest the existence of a low-frequency rigid
unit mode consisting of rotations of the SiO4 tetrahedra
as a whole, without internal Si-O stretching and O-Si-O
bending vibrations. In vitreous SiO2, it is interesting to
see that the value of C11 recovers and becomes greater
than C44, and a negative Poisson ratio never occurs (see,
for example, Ref. [18]). It is predicted that in vitreous
SiO2 the anomalous properties are localized due to the
destruction of long-range periodicity.

The authors thank S. Yip and J. Li for useful discus-
sions on the calculation of elastic constants using the MD
method.
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