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Quasiparticles in the Vortex Lattice of Unconventional Superconductors:
Bloch Waves or Landau Levels?
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A novel singular gauge transformation is developed for quasiparticles in the mixed state of a strongly
type-II superconductor which permits a full solution of the problem at low and intermediate fields,
Hc1 , B ø Hc2. For a periodic vortex lattice the natural low-energy quasiparticle states are Bloch
waves rather than Landau levels discussed in the recent literature. The new representation elucidates the
physics considerably and provides fresh insights into the spectral properties of such systems.

PACS numbers: 74.60.Ec, 74.72.–h
In conventional (s-wave) superconductors the single par-
ticle excitation spectrum is gapped and, consequently, no
quasiparticle states are populated at low temperatures. The
situation is dramatically different in unconventional super-
conductors which exhibit nodes in the gap. These lead
to finite density of fermionic excitations at low energies
which then dominate the low-temperature physics. Among
the known (or suspected) unconventional superconductors
are high-Tc copper oxides, organic and heavy fermion su-
perconductors, and the recently discovered Sr2RuO4. Un-
derstanding the physics of the low-energy quasiparticles
in the mixed state of these unconventional superconduc-
tors is an unsolved problem of considerable complexity.
This complexity stems from the fact that (i) in the mixed
state superconductivity coexists with the magnetic field
B and the quasiparticles feel the combined effects of B
and the spatially varying field of chiral supercurrents, and
(ii) being composite objects, part electron and part hole,
quasiparticles do not carry a definite charge. The cor-
responding low-energy theory therefore poses an entirely
new intellectual challenge [1], which is simultaneously of
considerable practical interest.

The initial theoretical investigations were based on
numerical computations [2], semiclassical approximations
[3], and general scaling arguments [4]. More recently,
Gorkov and Schrieffer [5] made a remarkable prediction
that in a dx22y2 superconductor at intermediate fields
Hc1 ø B ø Hc2 the quasiparticles will form Landau
levels (LL) with a discrete energy spectrum

En � 6h̄vH
p

n, n � 0, 1, . . . , (1)

where vH � 2
p

vcD0�h̄, with vc � eB�mc being the
cyclotron frequency and D0 the maximum superconducting
gap. Based on a somewhat different reasoning Anderson
[6] later arrived at a similar conclusion and argued that
LL quantization could explain the anomalous magneto-
transport in cuprates. Jankó [7] proposed a direct test of
Eq. (1) using the scanning tunneling spectroscopy.

The concept of LL quantization here is quite differ-
ent from the one in conventional superconductors, where
nodes in the gap arise as a result of the center-of-mass mo-
tion of pairs in strong magnetic fields near Hc2 [8]. The
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physics of Eq. (1) is based on the picture of a low-energy
quasiparticle Larmor-precessing in weak external magnetic
field along an elliptic orbit of constant energy centered
at the Dirac gap node in the k space [4,6]. This mo-
tion corresponds to a closed elliptic orbit in the real space
and the quantization condition (1) follows from demand-
ing that such an orbit contains n quanta of magnetic flux.
This argumentation neglects the effect of spatially varying
supercurrents in the vortex array, which were, however,
recently shown by Melnikov [9] to strongly mix the indi-
vidual Landau levels.

In this paper we formulate a new approach to the prob-
lem which treats the effects of the magnetic field and super-
currents on equal footing. As a result the physics becomes
transparent and for periodic vortex arrays in the intermedi-
ate field regime the low-energy theory can be solved in its
entirety. Our principal result is that the natural low-energy
quasiparticle states are Bloch waves of massless Dirac fer-
mions and not the Landau levels discussed above. We also
identify additional purely quantum mechanical terms ab-
sent in the conventional Doppler shift approximation [3].

At the heart of our approach is an observation that the
collective response of the condensate to the external mag-
netic field on average exactly compensates its effect on the
normal quasiparticles. More formally, the phase of the su-
perconducting order parameter, D�r� � D0eif�r�, acts as
an additional “gauge field” coupled to the quasiparticles.
In the vortex state f�r� is not a pure gauge: = 3 =f�r� �
2p ẑ

P
i d�r 2 Ri� where �Ri� denotes vortex positions.

From the vantage point of a quasiparticle the singularities
in = 3 =f act as magnetic half-fluxes concentrated in the
vortex cores with polarity opposing the external field. Flux
quantization ensures that on average this “spiked” field ex-
actly cancels out the external applied field B. In the mixed
state, the quasiparticle therefore can be thought of as mov-
ing in an effective field Beff which is zero on average but
derives from a vector potential that is highly nontrivial.
The nature of the phenomenon is purely quantum mechani-
cal, and is closely related to the Aharonov-Bohm effect.

Our solution consists in finding a gauge in which the
Hamiltonian manifestly displays the physical property de-
scribed above. In such a gauge the fermionic excitation
© 2000 The American Physical Society
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spectrum can be found by band structure techniques suit-
ably adjusted to the “off-diagonal” structure of the theory.
Besides revealing the nature of the low-energy quasipar-
ticles, this representation leads to new insights into the
physics of the mixed state. One surprising finding is that in
a perfectly periodic vortex lattice the original Dirac nodes
survive the perturbing effect of a weak magnetic field.

We now supply the details. Quasiparticle wave function
CT �r� � �u�r�, y�r�� is subject to the Bogoliubov–de
Gennes equation H C � EC, where

H �

0
B@ Ĥe D̂

D̂� 2Ĥ �
e

1
CA , (2)

with Ĥe � 1
2m �p 2 e

c A�2 2 eF and D̂ the d-wave pair-
ing operator. Following Simon and Lee [4] we choose
the coordinate axes in the direction of gap nodes, in which
case D̂ � p22

F ��� p̂x , � p̂y , D�r�����, where pF is the Fermi mo-
mentum, p̂ � 2ih̄=, and curly brackets represent sym-
metrization, �a, b� � 1

2 �ab 1 ba�. In high-Tc cuprates
it is natural to concentrate on the low to intermediate
field regime Hc1 , B ø Hc2, where the vortex spacing
is large and we may assume the gap amplitude to be con-
stant everywhere in space, D�r� � D0eif�r�. Under such
conditions the magnetic field distribution is described by a
simple London model and superfluid velocity, defined as
vs�r� � 1

m � h̄
2 =f 2

e
c A�, can be written in terms of vortex

positions �Ri� as [10]

vs�r� �
p h̄
m

Z d2k
�2p�2

ik 3 ẑ
l22 1 k2

X
i

eik?�r2Ri�, (3)

where l is the London penetration depth.
In order to diagonalize (2) it is desirable to remove the

phase factors eif�r� from the off-diagonal components of
H . This is accomplished by a unitary transformation

H ! U21H U, U �

0
B@ eife�r� 0

0 e2ifh�r�

1
CA , (4)

where fe�r� and fh�r� are arbitrary functions satisfying

fe�r� 1 fh�r� � f�r� . (5)

Equation (4) can be thought of as a singular gauge transfor-
mation since it changes the effective magnetic field seen by
electrons and holes. We now discuss three specific choices
for the functions fe and fh.

The most natural choice satisfying (5) is the symmetric
one, namely fe�r� � fh�r� � f�r��2, resulting in a ma-
trix Hamiltonian HS [11]0

B@
1

2m �p̂ 1 mvs�2 2 eF
D0

p2
F
p̂xp̂y

D0

p2
F
p̂xp̂y 2

1
2m �p̂ 2 mvs�2 1 eF

1
CA .

This particular gauge makes the Hamiltonian very simple
but unfortunately is not very useful because, as noted
by Anderson [6] and in a different context by Balents
et al. [12], the corresponding transformation (4) is not
single valued. To see this, consider the situation on en-
circling the core of a vortex: f winds by 2p but fe

and fh pick only a phase of p, causing U to have two
branches. Consequently, one is forced to diagonalize HS

under the constraint that the original wave functions are
single valued. Clearly, this is a difficult task. Neverthe-
less, the symmetric gauge reveals the physical essence of
the problem: formally, vs enters HS as an effective vec-
tor potential, which corresponds to an effective magnetic
field Beff � 2

mc
e �= 3 vs� fi B. It is easy to show from

Eq. (3) that Beff vanishes on average [13], i.e., that 	= 3

vs
 � 0, where angular brackets denote the spatial aver-
age. Aside from the single-valuedness problem, the low-
energy physics described by HS is that of a quasiparticle
in zero average magnetic field. The external field is com-
pensated by the array of magnetic half-fluxes giving rise
to a nontrivial vector potential with the periodicity of the
vortex lattice.

To avoid the problem of multiple valuedness, Anderson
[6] suggested taking fe�r� � f�r� and fh�r� � 0. This
leads to a Hamiltonian HA of the form [14]0

B@ 1
2m �p̂ 1 2mvs�2 2 eF D̂

D̂ 2
1

2m p̂2 1 eF

1
CA ,

with D̂ �
D0

p2
F

�p̂x 1 mysx� �p̂y 1 mysy� and p̂ � p 1
e
c A. In this representation one could consider neglecting
in the first approximation the vs terms, on the grounds
that they represent a perturbative correction [6]. At low
energies, expanding all the terms in HA to leading order
near the nodes, the Hamiltonian becomes that of massless
Dirac fermions in a uniform magnetic field B � = 3 A
with the energy spectrum [6] given by Eq. (1). The effects
of supercurrent field vs can in principle be treated pertur-
batively. This is, however, difficult in practice, because of
the massive degeneracy of the Landau levels and also be-
cause vs�r� is not a small perturbation (it diverges as 1�r
at the vortex cores) and will lead to strong LL mixing [9].
In the absence of a reliable scheme to incorporate vs�r�,
the physical picture of Larmor precessing quasiparticle
that leads to Eq. (1) is necessarily incomplete.

We now introduce a new singular gauge transformation
that combines the desirable features of the two transfor-
mations discussed above but has none of their drawbacks.
Consider dividing vortices into two distinct subsets A and
B, each containing an equal number of vortices. Now
denote by fA�r� the phase field associated with vortices
in the subset A, with the analogous definition of fB�r�.
The choice fe�r� � fA�r�, fh�r� � fB�r� clearly satis-
fies the condition (5) and the corresponding transformation
U is single valued. The resulting Hamiltonian HN is0

B@ 1
2m �p̂ 1 mvA

s �2 2 eF D̂

D̂ 2
1

2m �p̂ 2 mvB
s �2 1 eF

1
CA ,
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with

D̂ �
D0

p2
F

∑
p̂x 1

m
2

�yA
sx 2 yB

sx�
∏

3

∑
p̂y 1

m
2

�yA
sy 2 yB

sy�
∏

and

vm
s �

1
m

µ
h̄=fm 2

e
c

A
∂
, m � A, B . (6)

As long as the physical field B remains approximately
uniform, v

m
s �r� satisfies equations similar to (3) with Ri

replaced by R
m
i and an overall prefactor 2.

It is easy to verify that v
m
s corresponds to zero effective

field, i.e., that 	= 3 v
m
s 
 � 0. Evidently, there is no reason

to expect LL quantization in the system. This property
becomes more transparent if we focus on the low-energy
excitations. By linearizing HN in the vicinity of the four
nodes as described in Ref. [4] we obtain HN � H0 1

H 0, where

H0 �

0
B@ yFp̂x yDp̂y

yDp̂y 2yFp̂x

1
CA (7)

is the free Dirac Hamiltonian and

H 0 � m

0
B@ yFyA

sx
1
2yD�yA

sy 2 yB
sy�

1
2yD�yA

sy 2 yB
sy� yFyB

sx

1
CA . (8)

Here yF is the Fermi velocity and yD � D0�pF denotes
the slope of the gap at the node. In H 0 the Doppler
shift [3] enters as a scalar potential but there is also an
additional vector potential term m

2 �vA
s 2 vB

s �, which plays
an important role in the quasiparticle dynamics.

Our considerations so far have been completely general
and apply to an arbitrary distribution of vortices. In the
following we illustrate the utility of the new Hamiltonian
by finding the excitation spectrum in a periodic square vor-
tex lattice. With minor modifications the same approach
can be generalized to an arbitrary periodic lattice, such as,
e.g., triangular. We take A and B subsets to coincide with
the two sublattices of the square vortex lattice as illustrated
in Fig. 1(a). Expanding the quasiparticle wave function in
the plane wave basis C�r� �

P
q Cqeiq?r we arrive at an

equation of the form

H0�q�Cq 1
X
K

H 0�K�Cq1K � ECq . (9)

Because of its periodicity, H 0 has only nonvanishing
Fourier components at the reciprocal lattice vectors K �
2p

d �mx , my�, where �mx , my� are integers and d �
p

2F0�B
is the size of the unit cell. Aside from the 2 3 2 matrix
structure, Eq. (9) is a standard Bloch equation which we
solve by numerical diagonalization for q vectors in the first
MBZ, sketched in Fig. 1(b).
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FIG. 1. (a) Two sublattices A and B of the square vortex lattice
and the unit cell used in the numerical diagonalization of Eq. (9).
(b) The corresponding magnetic Brillouin zone.

As long as l ¿ d the results are independent of l

and the only free parameter in the low-energy theory is
the Dirac cone anisotropy aD � yF�yD. The band struc-
ture for the isotropic case, aD � 1 is presented in Fig. 2.
When compared to the unperturbed Dirac bands the peri-
odic potential has precisely the expected effect of opening
up band gaps at the MBZ boundaries. The surprising find-
ing is that the magnetic field does not destroy the original
nodal point, but merely renormalizes the slope of the dis-
persion. This finding can be understood as a consequence
of the exact electron-hole symmetry of the linearized Ham-
iltonian, Eqs. (7) and (8). The associated density of states
(DOS) vanishes at the Fermi level, in contrast to the peak
expected from the LL scenario [5–7] (cf. Fig. 2). The
peaks which appear in DOS are van Hove singularities

FIG. 2. Upper panel: lowest energy bands near a single node
for isotropic case aD � yF�yD � 1. Dashed lines represent the
unperturbed Dirac spectrum of H0 while solid lines reflect the
effect of the periodic potential H 0. Lower panel: the corre-
sponding DOS. Dashed line represents the thermally broadened
DOS resulting from LL spectrum of Eq. (1).
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FIG. 3. The same as Fig. 2 with aD � 20.

related to the band structure and have nothing to do with
LL spectrum of Eq. (1). Observation of these peaks is a
challenge to the experimental community.

In Fig. 3 we display the band structure for aD � 20,
a value perhaps more relevant for the optimally doped
YBa2Cu3O72d. The striking new feature is the formation
of additional lines of nodes on the Fermi surface [see also
Fig. 1(b)] which give rise to a finite DOS at the Fermi
surface. This structure can be understood by considering
the aD ¿ 1 limit [9]. The lines of nodes first appear at
aD � 15 and with increasing nodal anisotropy their num-
ber increases. This finding is consistent with the prediction
of a finite residual DOS based on the semiclassical ap-
proach [3], which is expected to be valid when D0 ø eF ,
or equivalently aD ¿ 1. Qualitatively similar results are
found for different orientations of the vortex unit cell with
respect to underlying ionic lattice.

In conclusion, we have shown how the collective super-
fluid response of a superconductor ensures that the effec-
tive magnetic field Beff seen by a fermionic quasiparticle
(and distinct from the physical field B) is zero on aver-
age, even in the vortex state. The physics of a low-energy
quasiparticle in a superconductor with gap nodes is that
of a massless Dirac fermion moving in a vector potential
associated with physical supercurrents but zero average
magnetic field. For a periodic vortex lattice the appro-
priate description is in terms of familiar Bloch waves. A
mathematically equivalent description could be given (in a
different gauge) in terms of Landau levels [5–7] strongly
scattered by supercurrents [9]. The fact that no trace of LL
structure remains in the exact spectrum of excitations sug-
gests that the former is a more useful starting point. The
LL quantization remains a domain of relatively high fields
[8]. Our conclusions are corroborated by the absence of
LL spectra in the numerical computations [2] as well as in
the experimental tunneling data on cuprates [15], and are
consistent with scaling arguments given previously [3,4].

In the present study we have focused on the leading
low-energy, long-wavelength behavior of the quasipar-
ticles as embodied by the linearized Dirac Hamiltonian,
Eqs. (7) and (8). In real materials and at higher energies
our results may be modified by the corrections to the
linearization, electron-hole asymmetry, possible internode
scattering, ionic lattice effects, and the vortex core physics.

We emphasize that the central idea of this paper, i.e.,
that upon proper inclusion of the condensate screening the
quasiparticles experience effective zero average magnetic
field, is completely general and robust against any effects
of short length scale physics. Consequently, our method
is applicable to any pairing symmetry and arbitrary distri-
bution of vortices and could be useful for understanding
the physics of vortex glass and liquid phases, as well as
the zero-field quantum phase-disordered states such as the
nodal liquid [12]. Of obvious interest are implications for
the quasiparticle thermodynamics, transport, and localiza-
tion properties in statically disordered or fluctuating vor-
tex arrays.
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