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Intermediate Shocks in Three-Dimensional Magnetohydrodynamic Bow-Shock Flows
with Multiple Interacting Shock Fronts
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Simulation results of three-dimensional (3D) stationary magnetohydrodynamic (MHD) bow-shock
flows around perfectly conducting spheres are presented. For strong upstream magnetic field a new
complex bow-shock flow topology arises consisting of two consecutive interacting shock fronts. It is
shown that the leading shock front contains a segment of intermediate 1–3 shock type. This is the first
confirmation in 3D that intermediate shocks, which were believed to be unphysical for a long time, can
be formed and can persist for small-dissipation MHD in a realistic flow configuration.
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Many phenomena in astrophysical and laboratory plas-
mas may be described by the equations of magnetohydro-
dynamics (MHD) [1]. The MHD equations describe the
motion of a nonrelativistic conducting fluid, and can be
derived by combining the equations of compressible hy-
drodynamics with the Maxwell equations. MHD allows for
three different small-amplitude—or linear—wave modes:
the fast, the Alfvén, and the slow wave. These wave modes
are anisotropic as the wave speeds strongly depend on the
angle between the direction of propagation and the mag-
netic field �B. Because of nonlinear effects, MHD waves
can steepen into shocks. Corresponding to the three types
of linear waves, the MHD equations allow for three differ-
ent types of shocks, namely, the fast, intermediate and slow
shocks. All MHD shocks have the property of coplanarity,
which means that the downstream magnetic field lies in
the plane defined by the upstream magnetic field and the
shock normal.

While fast and slow MHD shocks are known to occur in
plasma flows, it has been believed for a long time that
intermediate MHD shocks are unphysical [1,2], a view
that is still expressed in most present-day textbooks on
MHD. In the dissipationless—or ideal—MHD system
intermediate shocks are indeed unstable as they break up
instantaneously upon arbitrary small perturbation of the
magnetic field component out of the plane of coplanarity
(by Alfvén waves). However, recently it has been shown
that intermediate shocks can be stable when dissipation
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is included [3–9]. The precise influence of dissipation
mechanisms and magnitudes on the stability of intermedi-
ate MHD shocks is complicated and the analysis remains
incomplete. Nevertheless, the following general state-
ments can be made. Intermediate shocks are stable in the
dissipative MHD system for wide ranges of the coefficients
of resistivity, viscosity, and heat conduction [3–9]. They
can be destabilized by Alfvén waves, but only when the in-
tegrated amplitude of the perturbation is sufficiently large
[4]. The amplitude of the perturbation required for destabi-
lization decreases with decreasing dissipation [9,10]. The
stability issues involving intermediate shocks are due to
mathematical properties peculiar to MHD, namely, non-
strict hyperbolicity [5,9], nonconvexity [5,8,11], and rota-
tional invariance [9].

The theoretical results on the existence of intermediate
MHD shocks have been confirmed in simulations, but only
in one dimension (1D) [3,5]. In these simulations the initial
left and right states had to be chosen coplanar in order
for the stationary intermediate shocks to form and persist.
It can be argued that such a situation is exceptional, as
one may think that coplanarity of left and right states does
generally not occur at many locations and for long times in
real flows. The question whether intermediate shocks can
be formed and can persist in realistic three-dimensional
(3D) flows is thus still vigorously debated [5–14].

MHD shocks.—The equations of single-fluid MHD in
conservative form are given by
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supplemented with the divergence free condition = ? �B �
0 as an initial condition. Here r and p are the plasma den-
sity and pressure, respectively, �y is the plasma velocity, �B
is the magnetic field, and e � p��g 2 1� 1 r �y ? �y�2 1
�B ? �B�2 is the total energy density of the plasma. I is the
unity matrix. The right-hand side D contains dissipative
terms [1,5,9], which may include resistivity, viscosity, and
heat conduction. The magnetic permeability m � 1 in our
units. We take g � 5�3 for the adiabatic index.
© 2000 The American Physical Society
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The phase speeds of the three MHD waves, fast, Alfvén,
and slow, in propagation direction x are denoted by cfx ,
cAx , and csx , and the respective Mach numbers are de-
fined by Mfx � jyxj�cfx , MAx � jyxj�cAx , and Msx �
jyxj�csx . Three types of shocks are described by the MHD
equations, connecting plasma states which are labeled from
1 to 4, with state 1 superfast (yn . cfn in the shockframe,
with n the direction of the shock normal), state 2 sub-
fast but super-Alfvénic, state 3 sub-Alfvénic but super-
slow, and state 4 subslow. The fast 1–2 shock refracts
the magnetic field away from the shock normal. A limit-
ing case of the fast shock is the 1 2 � 3 switch-on shock,
where 2 � 3 means that yn � cAn downstream, and for
which the upstream magnetic field is parallel to the shock
normal, while the magnetic field makes a finite angle with
the shock normal in the downstream state. The tangen-
tial component of the magnetic field is thus switched on.
Intermediate shocks (1–3, 1–4, 2–3, and 2–4) bring a
super-Alfvénic upstream plasma to a sub-Alfvénic down-
stream state, while the magnetic field is flipped over the
shock normal as the tangential component of the magnetic
field changes sign. The slow 3–4 shock refracts the mag-
netic field towards the shock normal.

Intermediate shocks in 3D MHD bow-shock flows.—In
this paper we investigate 3D numerical simulation results
of MHD bow-shock flows around a perfectly conducting
sphere (Fig. 1) [14]. A uniform superfast plasma flow falls
in on the sphere and a stationary bow shock is formed. This
problem has three free parameters, for which we choose the
upstream plasma b � 2p�B2, the Alfvénic Mach number
MAx along the upstream magnetic field lines (we choose

FIG. 1. Magnetically dominated 3D bow-shock flow around a
sphere with inflow MAx � 1.49, b � 0.4, and uyB � 5±. The
flow comes in from the right. Density contours and magnetic
field lines are shown in the xy plane, which is a plane of symme-
try parallel to the upstream magnetic field and velocity vectors
and going through the center of the sphere. Density contours
are shown in two additional planes. In the upstream flow the
magnetic field is aligned to the x axis (40 3 80 3 40 grid).
the direction x along the upstream magnetic field), and the
angle uyB between the upstream velocity field and mag-
netic field. We simulate the 3D bow-shock flows start-
ing from a uniform initial condition and by advancing the
time-dependent MHD equations until a steady state solu-
tion is reached. We solve the ideal MHD equations us-
ing a conservative finite volume shock capturing scheme
which is second order accurate in space and time, employ-
ing a slope-limiter approach [14,15]. Numerical dissipa-
tion plays a role analogous to a small physical dissipation,
with effective resistivity, viscosity, and heat conduction of
roughly similar strength.

Figure 2a shows that for an upstream flow with a weak
magnetic field (to be made more specific below) a bow-
shock flow is obtained with a single shock front. This
is the classical bow-shock topology which is well known
from hydrodynamic bow shocks, and which until now was
believed to arise for all fast MHD bow-shock flows as well.
Figures 1 and 2b, however, show that for an upstream flow
with a strong magnetic field the leading bow-shock front
is followed by a secondary shock front. Extensive simu-
lations [14] show that this previously unknown complex
bow-shock topology arises for bow-shock flows when the
uniform upstream plasma state satisfies the conditions that
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FIG. 2. Bow-shock flows over a sphere (thick solid). The
flow comes in from the left. Density contours (thin solid) in
the xy symmetry plane are shown. The incoming magnetic
field is aligned with the x axis. (a) Pressure-dominated flow:
MAx � 3.985, b � 0.4, uyB � 5±. (b) Magnetically dominated
flow: MAx � 1.5, b � 0.4, uyB � 3.8±.
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with x the direction along the magnetic field. These con-
ditions are satisfied when the magnetic field is strong and
thermal and dynamical pressure effects are dominated by
magnetic effects. We call a state satisfying these conditions
magnetically dominated, as opposed to pressure domi-
nated. The magnetically dominated topology of Fig. 2b is
found not only for flows around spheres but also around,
e.g., paraboloid surfaces [14,16], not only for small values
of uyB as in Figs. 1 and 2 but for any value of uyB [14,16],
and using various grid resolutions and numerical schemes,
i.e., various effective dissipations.

Figure 3 shows plots, along cut P perpendicular to the
leading shock front in Fig. 2b, representing the Mach num-
bers in the direction of the shock normal. The shock along
cut P is of 1–3 intermediate type (close to 1 3 � 4, where
3 � 4 means that yn � csn downstream). The 1–3 shock
segment extends out of the xy plane (Fig. 1). Intermedi-
ate shocks thus exist and persist in this 3D MHD flow. In
the following section we explain, in terms of the geomet-
rical properties of MHD shocks [17], why the topology of
Fig. 2b with intermediate shocks has to arise when the up-
stream flow is magnetically dominated.

Explanation in terms of the properties of MHD
shocks.—We consider the flow topology in the xy plane
(Fig. 1). We call a point on a shock front where the
upstream magnetic field is perpendicular to the shock
front a perpendicular point (e.g., point B in Fig. 4).
Switch-on shocks and intermediate shocks exist only for
certain parameter ranges of the upstream plasma [18].
The conditions (2) and (3) are precisely the conditions
under which switch-on shocks exist. Given a fast 1–2
shock segment AB with upward deflection of the magnetic
field (Fig. 4) in a magnetically dominated upstream
flow—conditions (2) and (3) are satisfied— the shock
at the perpendicular point B bordering the segment AB
is necessarily a switch-on shock with upward deflection.
In this case the topology of Fig. 4a with a single shock
entirely of fast type is impossible, because the lower fast
shock segment, which deflects the magnetic field down-
wards, cannot be linked continuously to the switch-on
shock at point B [17].

Instead, the complex topology of Fig. 4b arises. Only
a segment of 1–3 intermediate type (BD) can be linked
continuously to the switch-on shock at point B. The
curved 1–3 intermediate segment BD can have only a lim-
ited extent, because the MHD Rankine-Hugoniot relations
(Fig. 5) show that, for increasing angle u between the up-
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FIG. 3. Normal Mach numbers and entropy along cut P in
Fig. 2b.
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stream magnetic field and the shock normal, the 1–3 shock
first becomes a 1 3 � 4 shock and then ceases to exist
[17,18]. At this point the leading shock front splits up
into two consecutive fronts. The leading segment DE is of
the 1–2 fast type, and detailed analysis of the simulation
results (see [14]) shows that the secondary segment DG
is 2–4 intermediate close to point D, evolving into 3–4
slow along the front [16]. This complex topology with in-
termediate shock segments is obtained in the simulation
of Fig. 2b. In contrast, for pressure-dominated flows, for
which conditions (2) and (3) are not satisfied, the magnetic
field is not refracted at a perpendicular point: the angle f

in Fig. 4a vanishes and the shock front can be entirely of
fast shock type. This single-front topology is indeed ob-
tained in the simulation of Fig. 2a.

Intermediate shocks in physical plasmas.—The simu-
lation results and analysis discussed above show that an
intermediate shock segment necessarily and naturally
arises and persists for the realistic 3D configuration
of uniform magnetically dominated MHD flow falling
in on a sphere. During the time-dependent formation
of the bow-shock solution in the simulation, the flow
automatically imposes the coplanarity condition for the
intermediate shocks along a segment of the leading shock
front due to the nature of the 3D problem. We have
performed simulations (not shown) which confirm that
noncoplanar perturbation of the inflow, e.g., by rotating
the inflow velocity around the x axis over a certain angle
u in Fig. 1, makes the intermediate shock segment split
up into two nonintermediate shocks [4,10], but in this
driven problem the intermediate shock segment reforms in
a different location. This shows that intermediate shocks
can be present in driven MHD flows, also when there are
perturbations.

An important question is where this new MHD bow-
shock topology with intermediate shocks could be ob-
served in physical plasmas. Several requirements have to
be fulfilled. First, conditions (2) and (3) have to be sat-
isfied upstream from a bow shock. These conditions are,
e.g., fulfilled in front of fast solar coronal mass ejections
(CMEs) [14,17], and may occasionally occur in the solar
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FIG. 4. Two proposed topologies for a shock front with an
upper segment AB of 1–2 fast type for the case of a magnetically
dominated upstream flow. Thick lines are shock fronts, thin lines
are magnetic field lines, and shock normals are dashed. (a) The
shock front cannot entirely be of the 1–2 fast type because the
two shock segments cannot be linked continuously at point B.
(b) A complex shock topology is necessary to channel the flow.
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FIG. 5. Intersection points 1, 2, 3, and 4 indicate solutions of
the MHD Rankine-Hugoniot relations for the upstream parame-
ters of Fig. 2b (state 1) and for various values of the angle u
between the upstream magnetic field and the shock normal. t
is the inverse density, and By is the component of the magnetic
field tangential to the shock front. The maximum angle u for
which 1–3 intermediate shocks can occur is approximately 3±.

wind upstream from the earth’s bow shock, when the solar
wind magnetic field is stronger than average, e.g., dur-
ing magnetic cloud events [14,16]. Second, the dissipa-
tion mechanisms and magnitudes in the physical plasma
under consideration have to match MHD dissipation for
which intermediate shocks are stable. Third, the pertur-
bations in the physical plasma have to be small and infre-
quent enough not to prevent the formation of intermediate
shocks. Unfortunately, quantitative assessment of the two
latter conditions seems prohibitively difficult at present due
to the complex and not fully understood relationship be-
tween MHD intermediate shock stability and dissipation.
Moreover, in the case of the earth’s bow shock, kinetic ef-
fects and the collisionless nature of the plasma complicate
the stability of shocks [19,20]. There is evidence from ob-
servations and simulations that intermediate shocks may
form in collisionless plasmas [19,20].

The ultimate test for the applicability of our predic-
tive theoretical result is confrontation with observations.
Claims have been made of intermediate shock observa-
tions in interplanetary space [21] and in front of fast CMEs
[14,17]. Our results seem especially relevant for the ob-
servation of intermediate shocks in Venus’ bow shock as
reported by Kivelson et al. [20]. Satellites to be launched
in the near future (CLUSTER II and STEREO) may pro-
vide observations in our solar system of the new bow-shock
topology with intermediate shock segments. This topology
may also arise in some of the many other astrophysical
flows in which MHD shock phenomena occur, including
shocks induced by astrophysical jets [22].
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