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Experimental Measurement of Neoclassical Mobility in an Annular Malmberg-Penning Trap
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An annular Malmberg-Penning trap confining a non-neutral plasma of electrons has been operated with
an azimuthal magnetic field to create drifts orthogonal to the magnetic flux surfaces. An applied electric
field and collisions with added helium drive transport by electric mobility. The measured confinement
times have the expected neoclassical magnetic-field dependence, are approximately 0.8 of the value
based upon the neoclassical mobility, and differ from the classical value by more than a factor of 3 at
the highest value of azimuthal field.

PACS numbers: 52.25.Wz, 52.25.Fi, 52.55.Dy
In fusion devices with toroidal fields, neoclassical trans-
port is greater than classical transport in a uniform field
of the same strength as a result of gradient and curvature
drifts that are orthogonal to the flux surfaces [1,2]. We de-
scribe neoclassical transport experiments with an annular
Malmberg-Penning trap in which a current-carrying con-
ductor has been added on the axis to create an azimuthal
magnetic field in addition to the usual axial field [3,4]. At
the ends of the device, electrons are reflected by an electro-
static field and there is a small radial displacement, orthog-
onal to the cylindrical flux surfaces, from the E 3 B drift.
These displacements are in opposite directions at the two
ends of the device and give the drift orbits a finite radial
extent. The drift orbit is cucumberlike when projected onto
the r-z plane and is analogous to the banana orbits of the
tokamak. Collisions with neutral gas result in an orbit be-
ing displaced by approximately the drift orbit width rather
than the Larmor radius. Thus transport coefficients for
the annular trap [5] have the neoclassical value rather than
the classical value. The Malmberg-Penning [6] trap in its
standard form has been used for detailed studies of trans-
port arising from electron-electron and electron-neutral [7]
collisions. In the experiments reported here, a radial elec-
tric field is applied which makes mobility the dominant
source of particle transport, and the measured mobility is
shown to agree, approximately, with the neoclassical value,
to have the neoclassical dependence upon each of the mag-
netic fields, and to be inconsistent with the classical value.
Neoclassical diffusion is more important than mobility in
determining the performance of fusion devices; however,
mobility may be an issue in those fusion plasma devices
where a strong electric field is applied at the edge to mod-
ify transport [8,9]. Currents driven by neoclassical effects
have been measured in a toroidal octupole device [10] and
diffusion of ions approaches the neoclassical value in toka-
maks operated in advanced modes that reduce turbulence
[11–14].

A simplified version of the trap geometry is shown
in Fig. 1, which illustrates the similarity of the drift or-
bits to those of the tokamak. The plasma is contained
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between concentric cylinders 150 mm in length of radii
r1 � 25.4 mm and r2 � 48 mm. There are Helmholtz
coils for creating an axial field, Bz , of 0–18 mT and
conductors along the axis to create an azimuthal field, Bu ,
of 0–12 mT. A field line near the inner cylinder spirals ap-
proximately once around the axis when these two magnetic

FIG. 1. Comparison of drift orbits (dotted lines) in the tokamak
and the annular trap. The upper figure shows the concentric
cylindrical walls of the annular trap with the oval drift orbit.
The lower figure shows the toroidal walls of the tokamak with
the bananalike drift orbit. The left side is an r-z projection and
the right side is an r-u projection. The devices have cylindrical
symmetry.
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fields are equal. Electrons are electrostatically reflected at
the ends of the cylinders by a negative potential, 26 V, ap-
plied to annular grids. Mobility transport is driven by a ra-
dial electric field within the cylinders created by a positive
bias potential, U � 36 V, applied to the outer cylinder.
The space charge electric field of the confined electrons is
a small perturbation. The inner electrode is kept at ground
potential. At one end of the device there is a filament,
not shown, biased to 2150 V, that emits energetic elec-
trons. These primaries create trapped secondary electrons
through ionizing collisions with added helium gas. Details
of the apparatus and the diagnostics have been given else-
where [3,4].

In the tokamak, Fig. 1, electrons with sufficiently low
velocity parallel to the magnetic field are reflected by the
mirror force and execute bananalike drift orbits. In the
annular trap, the electrostatic force at the ends replaces
the mirror force. There is in the tokamak a second class of
particles not reflected by the mirror force, and collisions
may cause particles to make transitions from one class of
particles to the other. The annular trap, therefore, does not
reproduce all of the transport features of the tokamak, but
rather isolates for study the transport of trapped particles.

Axisymmetry results in conservation of azimuthal
canonical angular momentum, Pu � r�qAu 1 myu� �
const, where Au�r� � 1

2 rBz is the vector potential for a
uniform axial field, and q and m are the charge and mass
of an electron, respectively. The azimuthal part of the
velocity parallel to the magnetic field, ykBu�B, changes
sign at the ends of the drift orbit, and from conservation
of Pu , the width of the drift orbit at the midplane is
rB � m�2yk�qBz� �Bu�B�. This formula also applies to
the banana width for the tokamak if Bz is interpreted as
the poloidal field at the midplane [15]. The canonical an-
gular momentum may be gyrophase and bounce averaged
to obtain
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where r0 is the radial location of the drift orbit center and
yD,u is the u component of the guiding center drifts. The
torque from collisions, rFu , changes the canonical angular
momentum:
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where we have used that r0 ¿ myD,u�qBz .
The torque causing transport is the collisional drag on

the equilibrium current J which is determined from the
fluid momentum equation

nm
dv
dt

� 2=P 2 nq=F 1 J 3 B , (3)

where n is the number density, P is the scalar electron
pressure, and F is the electrostatic potential. The gradients
are radial except in the end regions which are ignored. The
equilibrium current is

J � B 3 �=P 1 nq=F��B2 1 lB , (4)

where l is an adjustable constant. In the case of a long
mean free path, the axial confinement results in there be-
ing no fluid z velocity and hence no Jz . This condition
constrains the choice of l, and one finds that

Ju �
h
T

dn
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2 nqEr

i .
Bz , (5)

where the gradient in the temperature (written in energy
units) has been set to zero for simplicity. Collisions with
neutrals create an azimuthal drag force on the equilibrium
current, Fu � 2myun � 2mJun�nq, where n is the
electron-neutral momentum transfer collision frequency.
From Eq. (2), we find the radial particle flux G:

G � n
dr0

dt
� 2�mnT�q2B2

z�
dn
dr

1 n�mn�qB2
z�Er

� 2DNC
dn
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1 nmNCEr ,
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where DNC � mnT�q2B2
z is the neoclassical diffusion co-

efficient, and mNC � mn�qB2
z is the neoclassical mobility

coefficient which relates the radial drift velocity to the ra-
dial electric field. In the limit of short mean free path, the
adjustable constant in Eq. (4) is determined by a parallel
Ohm’s law. There being no parallel electric field (except
in the end regions), the parallel current is zero and l � 0.
In this case, one finds the classical values for mobility,
mc � mn�qB2, and for diffusion, Dc � mnT�q2B2. In
these coefficients, the absolute value of B appears rather
than Bz .

In the experiment, the confinement time resulting from
mobility transport is measured rather than the mobility drift
speed. We define a mobility confinement time, tm, as the
half-width of the plasma annulus divided by the mobility
drift velocity:

tm � dqB2
z�nmEr , (7)

where d � �r2 2 r1��2. In order for mobility to be the
dominant source of transport, this time scale must be made
shorter than the diffusive time scale, d2�DNC. Comparison
of these time scales shows that mobility transport is greater
for jqjU ¿ T . In the experiment, U � 36 V and the
measured initial electron temperature is 2.5 eV, thus this
condition is satisfied initially. Experiments in which U
has been varied from 18 to 90 V show linear scaling of the
transport with U, which indicates that mobility is indeed
dominant [4].

Numerical simulations of transport were performed by
adding “Monte Carlo” collisions to a computer code solv-
ing the Lorentz equations of motion. The collisions reori-
ented the velocity vector randomly in the laboratory frame.
Particles were launched midway between the cylinders and
followed for 32 collision times. The time between colli-
sions was made equal to approximately two bounce times
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so that drift orbits were completed between collisions. Fig-
ure 2 shows the mean mobility drift speed for 96 particles
for U � 36 V and for different values of the axial and azi-
muthal fields. Also plotted is the drift velocity obtained
from the neoclassical mobility in Eq. (6). The velocities
obtained numerically vary inversely with B2

z and are in-
dependent of Bu , which is the expected neoclassical scal-
ing. A more complete simulation is impractical due to the
large disparity between the time scales of gyration and of
transport. The drift approximation cannot be used because
diffusion of the guiding center is missed.

Experiments are performed by changing the filament
bias potential to stop the filling of the trap and then record-
ing the current drifting to the outer cylinder as a function
of time. The current measured is the sum of the current
of collected electrons and the current of the decaying im-
age charge which is of the opposite sign and approximately
half the magnitude. This factor of 1

2 arises from the image
charge being divided between the inner and outer cylin-
ders. The image charge decays in the same characteristic
time as the density of confined electrons which creates the
image charge, thus the image charge does not introduce a
new time scale.

The collision frequency is determined from the pressure
of helium added by means of a leak valve. An advantage
of using helium is that the energy dependence of the colli-
sion frequency is weak. For example, at 5 3 1025 Torr the
collision frequency calculated from the momentum trans-
fer cross section [16] is 1.4 3 105 s21 both at 5 eV and
at 15 eV. This is important because the electrons gain
energy as they move toward the positively biased outer
cylinder. The initial electron temperature has been deter-
mined from the retarding potential method and is approxi-
mately 2.5 eV [4]. The density determined from the charge
collected at the outer cylinder, corrected for the effect
of image charges, is 2.4 3 106 cm23. For Bz � Bu �

FIG. 2. The mobility drift velocity obtained from the simula-
tions for different values of the axial and azimuthal fields. The
velocities and error bars are from linear regressions made to the
trajectories of 96 particles. The dotted lines are the drift veloc-
ities calculated from the neoclassical mobility. The simulation
data show the neoclassical magnetic field dependence.
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10 mT, the Larmor radius is 0.36 mm and the drift orbit
width is 0.5 mm. The bounce frequency is 3 3 106 s21

thus there are �20 bounces per collision and the par-
ticles are well within the neoclassical regime. The ther-
mal velocity is 9 3 106 m�s, the azimuthal electric drift
is 1.5 3 105 m�s, and the gradient and inertial drifts are
�104 m�s.

The data in Fig. 3(a) are taken at a pressure of 5 3

1025 Torr, with Bu � 0 and with Bz from 10 to 17.5 mT.
At the higher field, the decay occurs more slowly as a result
of the decreased mobility. A logarithmic plot, Fig. 3(b),
shows that the decay is approximately exponential for the
first several e foldings and thus the e-folding time provides
a convenient measure for the confinement time. A similar
plot, in Fig. 3(c), shows the confinement times for an azi-
muthal field of 12 mT. Comparison of the two logarithmic

FIG. 3. (a) The current to the outer cylinder as a function of
time at a helium pressure of 5 3 1025 Torr for three values of
axial field and with no azimuthal field. (b) Logarithmic plot
of the same data. (c) Logarithmic plot for the conditions in (a)
with an additional azimuthal field of 12 mT. The decay times
are not changed by the addition of Bu .
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plots shows that the mobility is very nearly independent of
the azimuthal field.

Confinement times are plotted as a function of the square
of the axial field in Fig. 4(a). The data are for five val-
ues of axial field from 7.3 to 17.5 mT and five values of
azimuthal field from 0 to 12 mT. The solid line in this
plot is 0.8 of the calculated confinement time from Eq. (7).
This figure shows that the confinement time scales with the
square of the axial field. The data points for different val-
ues of azimuthal field show no systematic variation with
this field and lie nearly on top of one another. This point
is shown more clearly in Fig. 4(b) in which the confine-
ment times have been plotted as a function of azimuthal
field. The data points lie near the lines given by 0.8 of the
calculated confinement time from Eq. (7). The data are

FIG. 4. (a) Plot of the measured confinement times as a func-
tion of the square of the axial field for values from 7.3 to
17.5 mT and azimuthal fields of 0, 3, 6.7, 8.7, and 12.3 mT.
The pressure is 2.5 3 1025 Torr. The points for different azi-
muthal fields lie nearly on top of one another. The line is 0.8
of the value calculated from Eq. (7). (b) Plot of the same data
as in (a) as a function of the azimuthal field showing approxi-
mate agreement with 0.8 of the neoclassical time (solid lines)
and disagreement with 0.8 of the classical time (dotted lines).
The spread in the data points indicates the shot-to-shot repro-
ducibility of the experiment.
clearly inconsistent with the classical prediction, the dotted
lines in Fig. 4(b), because at the lowest value of axial field,
7.3 mT, the azimuthal field has been changed sufficiently
(0–12 mT) for the classical mobility to have changed by
a factor of 3.6. The measured confinement times being
systematically low may be due to the somewhat arbitrary
choice of half the annular width in the definition of tm

[Eq. (7)].
Experimental measurements of the neoclassical diffu-

sivity should be possible if the experiment can be operated
with a density sufficiently small for the mobility transport
from the space charge electric field to be negligible. If the
collision frequency were increased so that the mean free
path becomes shorter than the length of the device, the mo-
bility and diffusivity should make the predicted transition
from the neoclassical value to the classical value. In the
present device this is not possible because the high colli-
sion frequencies required result in a confinement time that
is too short to be resolved by the diagnostics.
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