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Quasilinear Theory of the 2D Euler Equation
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We develop a quasilinear theory of the 2D Euler equation and derive an integrodifferential equation
for the evolution of the coarse-grained vorticity v �r, t�. This equation respects all of the invariance
properties of the Euler equation and conserves angular momentum in a circular domain and linear impulse
in a channel. We show under which hypothesis we can derive an H theorem for the Fermi-Dirac entropy
and make the connection with statistical theories of 2D turbulence.

PACS numbers: 47.10.+g, 47.27.Jv, 47.32.Cc
Two-dimensional (2D) flows with high Reynolds num-
bers have the striking property of organizing spontaneously
into large-scale coherent vortices [1]. The robustness of
Jupiter’s great red spot, a huge vortex persisting for more
than three centuries in a turbulent shear between two zonal
jets, is probably related to this general phenomenon. Many
other vortices are observed in geophysical and astrophysi-
cal flows. Understanding the structure and formation of
these organized states is still a challenging problem.

To be explicit, we consider as an initial condition a stripe
of uniform vorticity v � s0 surrounded by irrotational
flow v � 0. This stripe is unstable and generates a com-
plicated mixing process leading to the formation of a quasi-
stationary vortex slightly diffusing with viscosity. This is
the classical shear layer (or Kelvin-Helmholtz) instability
investigated numerically in, e.g., Ref. [2]. These authors
proposed to interpret the quasiequilibrium state as a state
of maximum entropy under the constraint of a fixed en-
ergy and circulation. This is motivated by the statistical
theory of the 2D Euler equation developed by Miller [3]
and Robert and Sommeria [4]. A coarse-graining proce-
dure is introduced and a mixing entropy is constructed to
describe the chaotic interchange of vorticity levels along
the evolution. Since the vorticity levels cannot overlap,
they follow an exclusion principle and this leads to the
statistics of a Fermi-Dirac-type. Comparision with nu-
merical simulations [2] shows very good agreement with
the theoretical prediction in the core of the vortex, where
the fluctuations are sufficient to validate the ergodicity
hypothesis. This statistical mechanics of phase mixing is
closely related to the theory of “violent relaxation” devel-
oped by Lynden-Bell [5] for collisionless stellar systems
(e.g., elliptical galaxies) described by the Vlasov equa-
tion [6,7].

Less is known concerning the relaxation towards equi-
librium. This is clearly a complicated task and analytical
results will be obtained only by introducing approxima-
tions. Our objective is to derive a kinetic equation respect-
ing all of the conservation laws and invariance properties
of the Euler equation and driving the system towards the
Fermi-Dirac state by increasing the mixing entropy. If
such a program can be realized this will provide a use-
ful subgrid scale model, allowing large eddy simulations
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(LES) of 2D turbulence with potential applications in geo-
physics [8]. The first step in this direction was made by
Robert and Sommeria [9] using a variational procedure.
They assumed that “out of equilibrium, the system evolves
so as to maximize the rate of entropy production �S while
respecting all the constraints of the Euler equation.” This
maximum entropy production principle (MEPP) leads to
an equation for the coarse-grained vorticity of a general-
ized Fokker-Planck-type which can be compared succes-
fully with direct Navier-Stokes simulations [9,10]. Their
method was extended by Chavanis and Sommeria [11] who
derived a set of equations respecting, in addition, the in-
variance properties of the Euler equation. However, the
MEPP is relatively ad hoc and assumes that the system
evolves towards a maximum entropy state. In this Let-
ter, we consider a completely different approach based
on a perturbative expansion of the Euler equation. This
is the counterpart of the quasilinear theory introduced in
plasma physics and in stellar dynamics for the Vlasov
equation [12–14]. Within some approximations, we de-
rive a new kinetic equation of a generalized Landau-type
for the coarse-grained vorticity and prove an H theorem
for the Fermi-Dirac entropy (instead of postulating it). The
results of the MEPP are recovered as an approximation of
our model.

For a two-dimensional incompressible and inviscid flow,
the Euler equation can be written as

≠v

≠t
1 u=v � 0 , (1)

u � 2z ^ =c , v � 2Dc , (2)

where vz � = ^ u is the vorticity and c is the stream
function (z is a unit vector normal to the flow). The veloc-
ity can be expressed as an integral over the vorticity field
as

u�r, t� �
Z

d2r0 V�r0 ! r�v�r0, t� (3)

where

V�r0 ! r� � 2
1

2p

�r0 2 r��

jr0 2 rj2
1 Vb�r0 ! r� (4)
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represents the velocity created in r by a vortex of unit
circulation located in r0 (r� is the vector r rotated by
1

p

2 ). The term Vb�r0 ! r� accounts for boundary effects
(Vb � 0 in an infinite domain) and can be calculated with
the method of “images.”

In the situation described previously, the Euler equation
builds up an intricate filamentation at smaller and smaller
scales. If we subdivide our domain into a lattice of macro-
cells of size e, only the “coarse-grained” vorticity v �r, t�
can reach a stationary state. This coarse-grained vorticity
is defined by a double averaging process [13]: a space av-
erage over the cell of size e2 centered on r�i� and a statisti-
cal average to express our ignorance of the precise manner
in which the phase filaments of vorticity s0 are distributed
in the macrocell:

v �r�i�� �

ø
1
e2

Z
e

v�r�i� 1 r0� d2r0
¿

. (5)

The fluctuating vorticity ṽ � v 2 v, satisfying ṽ � 0,
is simply the difference between the exact vorticity and
the smoothed-out vorticity. The passage from discrete to
continuous variables for v requires a hypothesis of scale
separation. We shall assume that the velocity field u�r, t�
consists of a strong large-scale component and a weak
small-scale component such that the characteristic scale
of u is much greater than that of ũ (we also assume that
ṽ � v ). This hypothesis of scale separation was pre-
viously made by Dubrulle and Nazarenko [15]. This is
of course an idealization since the energy spectrum never
presents a clear-cut gap in practice. However, this approxi-
mation should account reasonably well for the nonlocal
interactions between large eddies and small scale fluctua-
tions in 2D turbulence. A more general study relaxing this
hypothesis can be found in [16].

If we take the local average of the Euler equation (1),
we obtain a convection-diffusion equation:

≠v

≠t
1 u=v � 2=J (6)

for the coarse-grained field with a current J � ṽũ related
to the correlations of the fine-grained fluctuations. In turn,
the fluctuations depend on the smoothed-out field accord-
ing to the equation

≠ṽ

≠t
1 u=ṽ � 2ũ=v 2 ũ=ṽ 1 ũ=ṽ (7)

obtained by subtracting (1) and (6). Within the scale sepa-
ration hypothesis, we can neglect the nonlinear terms ũ=ṽ

and ũ=ṽ which represent the interactions of the small
turbulent scales among themselves [15]. However, unlike
[15], we keep the linear term ũ=v which takes into ac-
count the interactions between small and large scales. Its
order of magnitude v 2e�L (where L ¿ e is the domain
size) is relatively small but this term has a cumulative ef-
fect [see Eq. (13)], giving rise to a diffusion process. We
consider therefore the coupled system,
≠v

≠t
1 Lv � 2=ṽũ , (8)

≠ṽ

≠t
1 Lṽ � 2ũ=v , (9)

where L � u= is an advection operator. This “quasilinear
approximation” is standard in plasma physics and in stellar
dynamics for the Vlasov-Poisson system [12–14] but, to
our knowledge, it has never been applied to the 2D Euler
system. Owing to the various approximations introduced,
this theory can describe only the late quiescent stages of
the relaxation when the fluctuations weaken.

By introducing the Greenian,

G�t2, t1� � exp

Ω
2

Z t2

t1

dtL �t�
æ

, (10)

we can immediately write down a formal solution of (9),
namely,

ṽ�r, t� � G�t, 0�ṽ�r, 0� 2
Z t

0
ds G�t, t 2 s�

3 ũ�r, t 2 s�=v �r, t 2 s� . (11)

Although very compact, this formal expression is in fact
extremely complicated. Indeed, all of the difficulty is en-
capsulated in the Greenian G�t, t 2 s� which supposes that
we can solve the smoothed out Lagrangien flow,

dr
dt

� u�r, t� , (12)

between t and t 2 s.
The objective now is to substitute the formal result (11)

back into (8) and make a closure approximation in order
to obtain a self-consistant equation for v �r, t�. If the
vorticity were purely advected by the stochastic velocity
field u (like a passive scalar), the interaction (3) would
be switched off and we would end up with a diffusion
equation for v with a diffusion coefficient D � 1

4 tũ2,
where t is the decorrelation time [6,10]. However, in the
case of the Euler equation, the velocity fluctuations are
induced by the fluctuations of the vorticity itself according
to

ũ�r, t� � l
Z

d2r0 V�r0 ! r�ṽ�r0, t� . (13)

Therefore, considering (11) and (13), we see that the vor-
ticity fluctuations ṽ�r, t� are given by an iterative pro-
cess: ṽ�t� depends on ũ�t 2 s� which itself depends on
ṽ�t 2 s�, etc. Since jũj, of order ve, is much smaller
than juj, of order Lv, we can solve this problem per-
turbatively. This is the equivalent of the “weak coupling
approximation” in plasma physics [12–14]. For conve-
nience, we have introduced a counting parameter l in (13)
which will be set equal to 1 ultimately. To order l2, we
obtain, after some rearrangements,
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≠v

≠t
1 Lv �

≠

≠rm

Z t

0
ds

Z
d2r0 d2r00 Vm�r0 ! r�G0�t, t 2 s�G�t, t 2 s�

3

Ω
Vn�r00 ! r�ṽ�r0, t 2 s�ṽ�r00, t 2 s�

≠v

≠rn
�r, t 2 s�

1 Vn�r00 ! r0�ṽ�r, t 2 s�ṽ�r00, t 2 s�
≠v

≠r 0n
�r0, t 2 s�

æ
. (14)
In this expression, the Greenian G refers to the fluid par-
ticle r�t� and the Greenian G0 to the fluid particle r0�t�. The
contribution proportional to l (not written) can be calcu-
lated with the assumption that ṽ is purely advected by the
large-scale velocity, i.e., ũ=v is neglected in (9). This is
the case considered by [15]. However, in this approxima-
tion the coarse-grained enstrophy

R
v 2 d2r is conserved

[15] and no trend towards a self-organized state (e.g., maxi-
mum entropy or minimum enstrophy state) is apparent.
The exchange of enstrophy between small and large scales
(and also the source of entropy) corresponds to higher or-
der corrections in the equation for ṽ. In this Letter, we
consider exclusively the term of order l2 which accounts
for a diffusion process, but we do not claim that the term
of order l must be necessarily discarded.

To close the system, it remains for one to evaluate the
correlation function ṽ�r, t�ṽ�r0, t�. We shall assume that
the scale of the kinematic correlations is small with respect
to the coarse-graining mesh size and take

ṽ�r, t�ṽ�r0, t� � e2d�r 2 r0�ṽ2�r, t� . (15)

This assumption is consistent with our scale separation
hypothesis and was made previously by [6,10] for the Euler
equation and by [12–14] in plasma physics. Now

ṽ2 � �v 2 v�2 � v2 2 v 2. (16)

For the case that we consider, the exact vorticity field
v can take only two values, v � 0 and v � s0. This
implies that v2 � s0 3 v � s0v and, therefore,

ṽ�r, t�ṽ�r0, t� � e2d�r 2 r0�v �s0 2 v � . (17)

Substituting this expression in Eq. (14) and carrying out
the integration on r00, we obtain

≠v

≠t
1 u=v � e2 ≠

≠rm

Z t

0
ds

Z
d2r0 Vm�r0 ! r�t

3

Ω
Vn�r0 ! r�v 0 �s0 2 v 0�

≠v

≠rn

1 Vn�r ! r0�v �s0 2 v �
≠v 0

≠r 0n

æ
t2s

.

(18)

We have written v 0
t2s � v ���r0�t 2 s�, t 2 s���, vt2s �

v ���r�t 2 s�, t 2 s���, Vm�r0 ! r�t � Vm���r0�t� ! r�t����,
and Vn�r0 ! r�t2s � Vn���r0�t 2 s� ! r�t 2 s���� where
r�t 2 s� is the position at time t 2 s of the fluid particle
located in r � r�t� at time t. It is determined by the
characteristics (12) of the smoothed-out Lagrangian flow.
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Equation (18) is a non-Markovian integrodifferential
equation: the value of v in r at time t depends on the
value of the whole vorticity field at earlier times. If the
decorrelation time t is short, we can make a Markov ap-
proximation and simplify the foregoing expression in

≠v

≠t
1 u=v �

e2t

2
≠

≠rm

Z
d2r0 Vm�r0 ! r�

3

Ω
Vn�r0 ! r�v 0 �s0 2 v 0�

≠v

≠rn

1 Vn�r ! r0�v �s0 2 v�
≠v0

≠r 0n

æ
.

(19)

In the case of an infinite domain, V�r ! r0� � 2V�r0 !
r� and we have the further simplification

≠v

≠t
1 u=v �

e2t

8p2

≠

≠rm

Z
d2r0 Kmn�r0 2 r�

3

Ω
v 0�s0 2 v 0�

≠v

≠rn

2 v �s0 2 v �
≠v0

≠r 0n

æ
, (20)

where

Kmn�r0 2 r� �
j

m
�j

n
�

j4 �
j2dmn 2 jmjn

j4 (21)

and j � r0 2 r. The symmetrical form of this equation
is of course reminiscent of the generalized Landau equa-
tion in plasma physics obtained with a quasilinear theory
[12–14].

By introducing a tensor

Dmn �
e2t

2

Z
d2r0 Vm�r0 ! r�Vn�r0 ! r�

3 v 0 �s0 2 v 0� (22)

and a vector

hm �
e2t

2

Z
d2r0 Vm�r0 ! r�Vn�r ! r0�

≠v 0

≠r 0n
, (23)

Eq. (19) can be rewritten in the more illuminating form

≠v

≠t
1 u=v �

≠

≠rm

∑
Dmn ≠v

≠rn
1 v �s0 2 v �hm

∏
.

(24)
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This equation has the structure of a generalized Fokker-
Planck equation with a diffusion term and a drift term.
The diffusion term corresponds to the turbulent viscos-
ity introduced ad hoc in most parametrizations of turbu-
lence. However, this term alone breaks the conservation
laws of the Euler equation. The present theory shows that
an additional drift term must exist in order to recover these
properties. The drift is nonlinear in v so that (24) is not,
strictly speaking, a Fokker-Planck equation. This nonlin-
earity accounts for the constraint v �r, t� # s0 imposed at
any time by the conservation of the fine-grained vorticity
[see Eq. (1)].

Equation (19) respects the invariance properties of the
2D Euler equation and has the same structure as Eq. (23) of
Chavanis and Sommeria [11] derived on the basis of ther-
modynamical arguments. In their Letter, the constraints
of the Euler equation were satisfied with the aid of La-
grange multipliers. In this new approach, the conserva-
tion laws follow naturally from the symmetrical structure
of Eq. (19), as for the usual Landau equation (the linear
impulse P �

R
vy d2r and the angular mometum L �R

vr2d2r play the role of the impulse P �
R

fv d3v and
kinetic energy K �

R
f

y2

2 d3v in plasma physics). This is
more satisfying from a physical point of view. Moreover,
in the thermodynamical approach, the increase of entropy
is postulated, whereas in the present situation an H theo-
rem for the Fermi-Dirac entropy,

S � 2
Z Ω

v

s0
ln

v

s0
1

µ
1 2

v

s0

∂
ln

µ
1 2

v

s0

∂æ
d2r ,

(25)

results immediately from Eq. (19). This is proved by tak-
ing the time derivative of (25), substituting for (19), inter-
changing the dummy variables r and r0, and summing the
two resulting expressions. Of course, the increase of en-
tropy is due to the coarse-graining procedure which creates
some irreversibility (the indetermination on the position of
the vorticity levels in a cell). The entropy S�v� for the
exact vorticity v is conserved by the Euler equation as the
integral of any function of v.

It is remarkable that a quasilinear theory is sufficient
to generate a turbulent viscosity (but also a drift) and a
source of entropy. We do not necessarily have to advocate
the nonlinear terms in (7) to get these properties. Note also
that the entropy associated with the (coarse-grained) Euler
equation is the Fermi-Dirac entropy (25), in agreement
with the works of [3,4] at equilibrium. Unfortunately,
Eq. (19) does not conserve energy exactly. Therefore, the
system will ultimately relax towards the solution v � s0�
�1 1 l exp�as0r2�� which is the maximum entropy state
at fixed circulation and angular momentum. This means
that our approximations break down at very late times.

A further connection with the statistical theory of 2D
turbulence can be found. Equation (19) is an integrodif-
ferential equation, whereas the equations derived from the
MEPP [6,9,11] are differential equations. The usual way to
transform an integrodifferential equation into a differential
equation is to make a guess for the function v 0 appearing
in the integral. It makes sense to replace v 0 by its optimal
value v 0 � s0��1 1 l exp�bs0c 0��, maximizing entropy
at fixed energy and circulation. By substituting in (22) and
(23) and making a “local approximation,” we obtain

h � Db=c , (26)

D �
te2

8p
ln

µ
L
e

∂
v �s0 2 v � . (27)

In Eq. (26), we recover the form of the drift derived by
Chavanis [17] in a point vortex model. The drift coefficient
can be interpreted as an Einstein formula. By substituting
for the drift in (24), we recover the equation

≠v

≠t
1 u=v � =���D�=v 1 b v �s0 2 v �=c���� (28)

obtained by Robert and Sommeria [9] using a maximum
entropy production principle. Equation (28) can be inter-
preted as a generalized Fokker-Planck equation [17]. Note
that the present approach provides the value (27) of the
diffusion coefficient which was left unknown by the varia-
tional principle [9]. This value coincides with the estimate
of [6,10] based on a passive scalar model.

The results of this Letter can be extended to an arbi-
trary spectrum of vorticity levels [8] for a wider class of
initial conditions. These results also complete the analogy
between 2D turbulence and stellar systems investigated by
the author [6,7].
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