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Quantum Transport through Ballistic Cavities: Soft vs Hard Quantum Chaos
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We study transport through a two-dimensional billiard attached to two infinite leads by numerically
calculating the Landauer conductance and the Wigner time delay. In the generic case of a mixed phase
space we find a power-law distribution of resonance widths and a power-law dependence of conductance
increments apparently reflecting the classical dwell time exponent, in striking difference to the case of a
fully chaotic phase space. Surprisingly, these power laws appear on energy scales below the mean level
spacing, in contrast to semiclassical expectations.
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Advances in the fabrication of semiconductor het-
erostructures and metal films have made it possible to
produce two-dimensional nanostructures with a very low
amount of disorder [1]. At low temperatures, scattering
of the electrons happens mostly at edges of the structures
with the electrons moving ballistically between colli-
sions with the boundary. Theoretical and experimental
investigations have shown that the spectral and transport
properties of such quantum coherent cavities, commonly
called “billiards,” depend strongly on the nature of their
classical dynamics. In particular, integrable and chaotic
systems were found to behave quite differently [2,3].

Generic billiards are neither integrable nor ergodic [4],
but have a mixed phase space with regions of regular as
well as chaotic dynamics [5]. Their dynamics is much
richer than in either of the extreme cases, as phase space
has a hierarchical structure at the boundary of regular and
chaotic motion. In particular, this leads to a trapping of
chaotic trajectories close to regular regions with a proba-
bility P�t� � t2b for t . t0, to be trapped longer than a
time t, with t0 of the order of a few traversal times [6]. The
exponent b . 1 depends on system and parameters with
typically b � 1.5 [6]. This power-law trapping in mixed
systems is in contrast to the typical exponentially decaying
staying probability of fully chaotic systems (see Fig. 1).

Recently, it was shown semiclassically employing the
diagonal approximation that the variance of conductance
increments (for a small dc bias voltage) over small energy
intervals DE grows as [7,8]

Dg2�DE� � ��g�E 1 DE� 2 g�E��2	E � jDEjb , (1)

for mixed systems if b , 2. This is in strong contrast to an
increase as �DE�2 in the case of fully chaotic systems [3].
The semiclassical approximation requires DE to be larger
than the mean level spacing D, corresponding to the picture
that quantum mechanics can follow the classical power-law
trapping at most until the Heisenberg time tH � h
D [9].
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In the semiclassical approximation the graph of g vs E
has the statistical properties of fractional Brownian mo-
tion with a fractal dimension D � 2 2 b
2 [7]. Frac-
tal conductance fluctuations have indeed been found in
experiments on gold wires [10] and semiconductor nano-
structures [11] and numerically for the quantum separatrix
map [12].

In this Letter, we numerically study quantum transport
through a simple cavity, the cosine billiard [13] (see in-
sets of Fig. 1). Although we observe completely different
behavior for the mixed and fully chaotic cases in the semi-
classical regime of many (45) transmitting modes, we find
in the mixed case no indication of fractality or fractional
Brownian motion behavior of the graph g vs E. This is
the first surprise, as it is in contrast to the above mentioned
semiclassical [7], experimental [10,11], and numerical [12]
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FIG. 1. Classical dwell time probability P�t�, for the cases of
mixed (thick line) and fully chaotic (thin line) dynamics with t
in units of the traversal time. The insets show the shape of the
billiard with attached leads and a Poincaré surface of section of
the closed billiard for the mixed (upper right) and chaotic (lower
left) case.
© 2000 The American Physical Society



VOLUME 84, NUMBER 24 P H Y S I C A L R E V I E W L E T T E R S 12 JUNE 2000
works. Instead, the conductance is characterized by nar-
row isolated resonances, with the classical exponent b ap-
pearing in a power-law distribution of resonance widths
smaller than the mean level spacing. This leads to a scal-
ing of Dg2�DE� in agreement with the semiclassically de-
rived Eq. (1), however, only on scales below the mean level
spacing. This surprising result contradicts the semiclassi-
cal intuition that quantum mechanics may mimic classical
properties at most until the Heisenberg time corresponding
to energy scales above the mean level spacing. At present,
there is no explanation for these numerical results. They
show that even with a detailed (semiclassical) knowledge
of the universal chaotic regime as well as the integrable
case at hand we are just at the beginning of understanding
the quantum properties of generic Hamiltonian systems.

The cosine billiard [13] is defined by two hard walls
at y � 0 and y�x� � W 1 �M
2� �1 2 cos�2px
L��, for
0 # x # L, with two semi-infinite perfect leads of width
W attached to the openings of the billiard at x � 0 and x �
L (see insets of Fig. 1). By changing the parameter ratios
W
L and M
L the stability of periodic orbits associated
with the billiard can be changed, allowing a transition from
a mixed to a predominantly chaotic phase space. Note that
in the mixed case the leads couple to the chaotic part of
phase space only.

The S matrix of the system has been calculated by
the recursive Green’s function method after expanding
the two-dimensional wave function in terms of local
transverse energy eigenfunctions [14]. In the numerical
calculations, it was checked that a sufficient number of
modes in the expansion in transverse eigenmodes was
kept and that the lattice constant in the x direction was
sufficiently small. For a given energy EF � h̄2k2

F
2m, N
modes in the leads are transmitting, with kFW
p $ N .
We turn from the S matrix to the experimentally relevant
conductance at small dc bias voltage using the Landauer
formula, G � e2
h Tr�tty�, where t is the transmis-
sion matrix. Spectral information is contained in the
Wigner-Smith time delay t � 2ih̄ Tr�SydS
dE�
2N ,
where 2N is the dimension of the S matrix. All energies
in this paper are given in units of h̄2p2
�2mW2�.

Figure 2 shows the dimensionless conductance
g � G�h
e2� and the Wigner-Smith time delay t [in
units of 2mW2
�h̄p2�] for parameters corresponding to
a mixed phase space (W
L � 0.18, M
L � 0.11) and
a chaotic phase space with no apparent stability island
(W
L � 0.36, M
L � 0.22) for N � 45 transmitting
modes. The differences are quite dramatic. For the fully
chaotic case, both quantities are smooth functions of en-
ergy and in good agreement with semiclassical theory (see
below). While the average values are comparable, many
sharp isolated resonances on top of a smooth background
are visible in the mixed case [15], also in contrast to the
semiclassically predicted fractional Brownian motion.
The simple explanation that these narrow resonances are
related to quantum tunneling into the islands of regular
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FIG. 2. Dimensionless conductance g (a) and Wigner time de-
lay t (b) for N � 45 propagating modes. Thick (thin) lines for
mixed (fully chaotic) case.

motion [16] does not apply here, as the phase space vol-
ume of stable islands is about 5%, while the narrow reso-
nances (below the mean level spacing) make up about 18%
of all states associated with the billiard. This roughly
corresponds to the phase space volume around the stable
islands where trapping of chaotic trajectories occurs.

In order to analyze the narrow resonances in the mixed
case, it is convenient to examine the Wigner-Smith time
delay. Each resonance in the time delay has the Breit-
Wigner shape, characterized by a width Gi and a height ti

situated at an energy Ei on top of a smooth background.
We find our data well described by

t�E� �
X

i

ti
G

2
i 
4

�E 2 Ei�2 1 G
2
i 
4

1 tsmooth�E� , (2)

with tsmooth�E� ~ E21
2. Since the phase shift through
a resonance is 2p , width and height are related by
tiGi � 2
N . The energy was initially sampled
on an equidistant grid and subsequently refined in
order to resolve the sharp resonances. Only reso-
nances with a G & 1023, i.e., much smaller than
the initial grid are lost. As a result we can nu-
merically construct the cumulative distribution N�G�
of resonance widths, corresponding to the probability of
finding a resonance smaller than G (Fig. 3). The distribu-
tion is very broad, spanning 5 orders of magnitude, and is
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FIG. 3. Normalized cumulative distribution of resonance
widths N�G� for the mixed case. The thin line serves as a guide
to the eye. The mean level spacing D is shown in the figure.
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approximately a power law N�G� � aGr , with r � 0.35,
over a wide range below the mean level spacing
D � 0.176.

The consequences of this broad distribution of resonance
widths for the variances of conductance and time delay
increments are studied now. For DE ø D correlations be-
tween different isolated resonances (G ø D) do not con-
tribute to the variance Dg2, which then is governed by the
distribution of resonance widths. Each resonance is re-
flected in the conductance,

g�E� � gsmooth�E� 1

NRX
i�1

dgi�E� , (3)

where dgi�E� is a function of the width Gi and the typical
height egi . NR is the number of resonances with Gi ,

D in the energy interval EB 2 EA over which we take
the average. The variance of the increments of a single
resonance is given by
��dgi�E 1 DE� 2 dgi�E��2	E �
eg2

i Gi

EB 2 EA

Ω
bi�DE
Gi�2, DE ø Gi ,
1, DE ¿ Gi ,

(4)
which defines egi and where bi is a numerical factor of
order unity. Since the distribution of widths is very broad,
the strong inequalities are almost always fulfilled in the
sum over resonances. Splitting this sum into resonances
smaller and larger than DE, we get

Dg2�DE� �
1

EB 2 EA

√ X
Gi,DE

eg2
i Gi 1

X
Gi.DE

bieg2
i

�DE�2

Gi

!
.

(5)

Replacing the sums by integrals over the density of widths
n�G� � arGr21 and neglecting the weak fluctuations
of egi and bi as compared to Gi , we can estimate for
small DE,

Dg2�DE� ~ �eg2	
NR

EB 2 EA
ajDEj11r , (6)

where �· · ·	 stands for the average over isolated resonances.
A power-law distribution of resonances thus leads to a
power-law increase of the variance of conductance incre-
ments with the exponent given by 1 1 r .

Figure 4(a) shows the variances of the conductance in-
crements. On scales smaller than the minimum resonance
width the variance increases quadratically, as expected.
On larger scales we find the power law Eq. (6). This
result coincides with the semiclassically derived Eq. (1)
with r � b 2 1, however, only on scales below the mean
level spacing. At present, there is no explanation why the
classical exponent b appears on such small energy scales.
Remarkably, on scales above the mean level spacing the
correlation energy for the conductance fluctuations is given
by the Weisskopf width GW � 2, as in the fully chaotic
case (see below).
The variance of increments of the time delay are shown
in Fig. 4(b). Since the variance Dt2�DE� measures the
square of the resonance peak height in the time delay, in the
mixed case, they are completely dominated by the sharpest
resonance, once the energy exceeds the minimum reso-
nance width. Thus, in contrast to fully chaotic systems, in
mixed systems the scale of the correlations of the time de-
lay is the smallest resonance width and not the Weisskopf
width GW .

For comparison in Fig. 4 we also show the results for
Dg2�DE� and Dt2�DE� for the fully chaotic case. They are
characterized by single scales Gg � 4.8 and Gt � 3.8 and
are in good agreement with semiclassical results [3,18].
The chaotic case can also be described by the random
matrix theory (RMT) [19], whose results coincide with
the cited semiclassical ones for N ¿ 1 [20]. In the ab-
sence of direct processes, RMT predicts a single correla-
tion scale, known as Weisskopf correlation width, GW �
D
2p

P
c Tc, where the sum runs over all channels c with

transmission probability Tc [21]. Approximating
P

c Tc

by twice the average dimensionless conductance we obtain
GW � 4.2, in agreement with the numerical values within
the statistical accuracy. Before concluding, it is worth-
while to stress that, depending on N and the coupling to
the leads, quantum chaotic scattering can also exhibit iso-
lated resonances. Their width distribution, however, fol-
lows a x2 distribution with N degrees of freedom [19],
rather than power law.

In conclusion, we have shown that generic Hamil-
tonian systems, which have regular as well as chaotic
phase space regions, differ drastically in the Landauer
conductance and Wigner time delay from fully chaotic
systems. We find many isolated narrow resonances with
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FIG. 4. Variance of the increments of the conductance
Dg2�DE� (a) and Wigner time delay Dt2�DE� (b). The thick
(thin) lines correspond to the mixed (fully chaotic) case. The
thin dashed lines are fits to the semiclassical expressions for the
chaotic case. The thick dashed line in (b) is the contribution
of the sharpest resonance to the variance for the mixed case.
For comparison, the ticks on the upper borders mark the
widths of the individual resonances. The inset in (a) shows
the corresponding data for a quantum graph modeling a mixed
phase space (classical b � 1.48) and was provided by the
authors of Ref. [17]. The mean level spacing D is shown in the
figures.

a power-law distribution of their widths accompanied
by a power-law increase of the variance of conductance
increments. Both power laws appear to be connected to
the classical power-law trapping, surprisingly they appear
only on scales below the mean level spacing. Similar
unexplained power laws are found in recent studies using
quantum graphs [22] modeling a mixed phase space [see
inset of Fig. 4(a)] [17]. Further research on the quantum
signatures of classically mixed systems is urgently needed.
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Note added.—The authors of Ref. [17] have informed
us that there are quantum graphs where the classical and
quantum exponents do not agree.
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