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We demonstrate how the anisotropy of the vacuum of the electromagnetic field can lead to quantum
interferences among the decay channels of close lying states. Our key result is that interferences are given
by the scalar formed from the antinormally ordered electric field correlation tensor for the anisotropic
vacuum and the dipole matrix elements for the two transitions. We present results for emission between
two conducting plates as well as for a two photon process involving fluorescence produced under coherent
cw excitation.

PACS numbers: 42.50.Ct, 32.50.+d, 42.50.Gy
Recently, considerable effort has been devoted to the
question of coherence and interference effects arising from
the decay of close lying energy levels [1–10]. Such in-
terference effects lead to many remarkable phenomena
such as population trapping [6], spectral narrowing [1–3],
gain without inversion [1,7,9], phase dependent line shapes
[2,10,11], and quantum beats [5,12]. However, the very
existence of the interference effect depends on the valid-
ity of a very stringent condition, viz., the dipole matrix
moments for two close lying states decaying to a common
final state should be nonorthogonal [6]. This last condi-
tion is really the bottleneck in the observation of the pre-
dicted new effects. Some progress, however, was made
with the use of static and electromagnetic fields to mix
the levels [12] so that the relevant dipole moments become
nonorthogonal. In this Letter, we propose a totally differ-
ent mechanism to overcome the problem of the orthogo-
nality of the dipole moments. We suggest working in
such situations where the vacuum of the electromagnetic
field is anisotropic, so that the interference among decay
channels can occur even if the corresponding dipole mo-
ments are orthogonal. This provides a possible solution
to the long-standing problem in the subject of interference
among decay channels. Our key result is that interferences
are given by the scalar formed from the antinormally or-
dered electric field correlation tensor for the anisotropic
vacuum and the dipole matrix elements for the two transi-
tions. This is in contrast to the usual result that interfer-
ences are given in terms of the scalar formed out of the
dipole matrix elements. This opens up the possibility of
studying quantum interferences in a variety of new classes
of systems. At the outset, we mention that one can con-
sider many situations where vacuum will be anisotropic,
for example, (a) doped active centers in anisotropic glasses
[13], (b) emission of active atoms in a waveguide [14],
(c) spontaneous emission from atoms adsorbed on metallic
or dielectric surfaces [15], (d) emission in a spatially dis-
persive medium—which allows the possibility of longitu-
dinal electromagnetic fields, and (e) emission between two
conducting plates [15,16], which is a problem of great in-
terest since the early work of Casimir. Our results suggest
the study of quantum interferences in a totally new class
0031-9007�00�84(24)�5500(4)$15.00
of situations involving atoms and molecules adsorbed on
surfaces. Explicit results in some of these situations will
be given later.

Interferences in fluorescence under coherent excitation:
Two photon processes.—Before we present detailed dy-
namical equations, we consider a simple situation which
enables us to bring out the essential physics of the inter-
ferences associated with anisotropic vacuum fields. We ba-
sically examine the nature of interferences in spontaneous
emission. However, here the way the system is excited is
important. A practical way would be to excite by a coher-
ent cw radiation. In technical terms this is a two photon or
a second order process. This is in contrast to those studies
which ignore how the system was excited. Note that in
the experiment of Xia et al. [4] the fluorescence produced
by two photon excitation was studied. Let us consider the
process (Fig. 1) in which the atom in the state jg� absorbs
a photon of frequency vl and wavevector �kl , and emits a
photon to end up in the state j f� which is distinct from the
ground state jg�. In the process of absorption and emis-
sion, the atom goes through a number of virtual interme-
diate states. For the purpose of the argument, we retain
only two intermediate states j j� � j � 1, 2�. The transi-
tion probability for this process can be calculated using
the second order perturbation theory (cf. Ref. [17]). The
initial state of the field is vacuum jy�. For simplicity we
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FIG. 1. Schematic diagram of the two interfering pathways
contributing to the two photon process. The wavy arrows repre-
sent emission into anisotropic vacuum.
© 2000 The American Physical Society



VOLUME 84, NUMBER 24 P H Y S I C A L R E V I E W L E T T E R S 12 JUNE 2000
assume that the absorption is from a coherent field El . Let HI �t� be the interaction Hamiltonian in the interaction picture.
As usual [17], we assume that the perturbation is switched on slowly. Then the transition probability of the above second
order process can be written as

Tgf � lim
t!`

d
dt

X
F

Ç
1
h̄2

Z t

2`
dt1

Z t1

2`
dt2 � f, FjHI �t1�HI �t2�ee�t11t2�jg, y�

Ç2
. (1)
We sum over all final states jF� of the field, i.e., we assume
that no spectral measurement of the emitted field is done.
The interaction Hamiltonian can be written as

HI �t� � 2 �d�t� ? �Ele
2ivl t1i �kl ?�r 2 �d�t� ? �Ey�t� 1 H.c. ,

(2)

where �Ey is the electric field operator for the vacuum and
�d is the dipole moment operator for the atom. By substi-
tuting (2) into (1) and by carrying out all of the simplifi-
cations and making rotating wave approximation, we find
the expression for the transition probability,
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(3)

Here we introduced the correlation function tensor
)
C

for the antinormally ordered correlation function for the
vacuum field,

)
C�v� �

Z 1`

2`
dt eivt� �E�1�

y �t� �E�2�
y �0�� ,

�Ey�t� � �E�1�
y �t� 1 �E�2�

y �t� ,
(4)

where �E�1�
y and �E�2�

y are, respectively, the positive and
negative frequency parts of the field operator represent-
ing anisotropic vacuum. The two field operators in (4) are
to be evaluated at the position of the atom. The expres-
sion (3) displays explicitly the atomic and vacuum field
characteristics. The anisotropic vacuum enters through the
correlation tensor

)
C. The terms i fi j in (3) correspond

to the interferences between the decay channels ji� ! j f�
and jj� ! j f�. The quantum interferences will be non-
vanishing only if

�d�
fj ?

)
C�vl 2 vfg� ? �dfi fi 0 . (5)
This is one of the key results of this paper. For isotropic
vacuum the correlation tensor

)
C is proportional to the unit

tensor:
)
C �

)
I C, and hence (5) reduces to

�d�
fj ? �dfi fi 0 . (6)

Clearly the interferences will survive even if the corre-
sponding dipole matrix elements are orthogonal provided
that the vacuum field is anisotropic. Note further that with
a proper tuning of the field the amplitude Tgf can, in prin-
ciple, become zero. It may be noted that the correlation
functions

)
C are known in the literature for a variety of

situations, including the ones mentioned in the introduc-
tory paragraph.

Anisotropy-induced interference in dynamical evolu-
tion.—Let us next consider the dynamical evolution of
the atomic density matrix so that we can study various
line shapes and other dynamical aspects of emission.
For simplicity we consider a j � 1 to j � 0 transition.
Let a static magnetic field be applied along the y direc-
tion. This defines the quantization axis. The magnetic
sublevel j1� � j j � 1, m � 1� with energy h̄v1 (j2� �
j j � 1, m � 21� with energy h̄v2) decays to the state
j3� � j j � 0, m � 0� (energy � 0) with the emission
of a right (left) circularly polarized photon. We drop the
level j � 1, m � 0 from our consideration as it does
not participate in interferences. The Hamiltonian for the
interaction of the atom with the vacuum is

H1 � 1dj1� �3jê2 ? �Ey�t� 2 dj2� �3jê1 ? �Ey�t� 1 H.c. ,
(7)

where ê6 � �ẑ 6 ix̂��
p

2 and d is the reduced dipole
matrix element. In order to describe the dynamics of the
atom, we use the master equation framework. We use
the Born and Markov approximations to derive the mas-
ter equation for the atomic density matrix r. In rotating
wave approximation, our calculations lead to the equation
≠r

≠t
� 2i�v1j1� �1j 1 v2j2� �2j�r 2 g1�j1� �1jr 2 r11j3� �3j� 2 g2�j2� �2jr 2 r22j3� �3j�

1 k2�j1� �2jr 2 r21j3� �3j� 1 k1�j2� �1jr 2 r12j3� �3j� 1 H.c. (8)
Here the coefficients g’s and k’s are related to the
antinormally ordered correlation functions of the vacuum
field
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Note that the terms involving k1 and k2 are responsible
for interferences between the two decay channels j1� !
j3� and j2� ! j3�. For the case of free space, vacuum is
isotropic,

C�1�
zz �v� � C�1�

xx �v�, C�1�
zx �v� � C�1�

xz �v� � 0 ,
(12)

and hence

k1 � k2 � 0 , (13)

leading to no interferences in the decay channels. Clearly,
for decay in free space the interferences could be possible
only if the dipole matrix elements were nonorthogonal:
�d13 ? �d�

23 fi 0. Our development of the master equation
shows how the interferences in the decay channels are pos-
sible even if the dipole matrix elements were orthogonal.
We need the anisotropy of the vacuum. The anisotropy
leads to the nonvanishing of the coefficients k1 and k2. The
interferences are particularly prominent when k’s become
comparable to g’s. Thus for our situation we will recover
all previous results [1–11] on line shapes and trapping.

We can now consider explicitly the situations of the type
mentioned in the introductory paragraph. The correlation
functions

)
C can be computed, for example, in situations

corresponding to the emission from an atom in a metallic
waveguide or an atom between the plates of a perfect con-
ductor. By using the relation

1
´ 1 i�v0 2 v�

� P
1

i�v0 2 v�
1 pd�v0 2 v� ,

(14)

and by ignoring the principal value terms in Eq. (9), we
can approximate

)
C�1� as

)
C�1��v� �

1
2

)
C�v� . (15)

The correlation function for the vacuum field can be cal-
culated by quantizing the field and by using the properties
of annihilation and creation operators. However, in certain
situations the explicit quantization of the field is compli-
cated and hence we follow a different method. By using the
linear response theory, the correlation function

)
C�v� can

be related [18] to the solution �E��r , t� � �E �r̄ , v�e2ivt 1

c.c. of Maxwell’s equations with a source polarization
�P � �pd��r 2 �r0�e2ivt 1 c.c.,

Cab�v� � 2h̄ Im�Ea�r0, v��pb	, v . 0 . (16)

Note that the dynamical equation (8) can be used to cal-
culate all of the line shapes (both absorption and emission)
for an anisotropic vacuum by using Eqs. (10), (11), (15),
and (16). Note that the quantity in the bracket in Eq. (16)
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is the Green’s tensor for the Maxwell equations. Thus the
procedure for a given geometrical arrangement will con-
sist of the evaluation of the Green’s tensor and then the
application of (16) to obtain the correlation tensor.

Interferences in emission between two conducting
plates.—Let us now consider an important problem [19]
in cavity QED, viz., the emission from an atom located
between two conducting plates (Fig. 2) at z � 0 and
z � 2d. The atom is located at z � 2b. The C’s,
as defined by (4), can be calculated using (16). These
calculations are extremely long. We will only quote the
final result. For this geometry Czx , Cxz � 0. Furthermore,
the parameters g’s and k’s entering the master equation
(8) can be shown to be

gi � g
�0�
i �G��vi� 1 Gk�vi�	�2 , (17)

ki � g
�0�
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(20)

and where N is the largest integer smaller than kd�p.
The explicit results (17) and (18) show the expected
interferences between the decay channels. Clearly the
interferences will be sensitive to the magnitude of the
magnetic field which enters through v. The case of small
magnetic fields is especially interesting. We further note
that below the cutoff frequency kd�p , 1, Gk�v� ! 0,

FIG. 2. Emission by an excited three level atom in between
two conducting plates. The magnetic field is along the y direc-
tion. The conducting plates lead to the anisotropy of the vacuum
field.
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G��v� ! 3p�2kd, and ki � gi . In this limit quantum
interferences become especially prominent. We further
note that (a) in the limit d ! `, we get results for
emission in the presence of a single conducting plate, and
(b) the quantities Gk and G� are related to the emission
from a single two level atom [15,16] between the two
conducting plates.

In conclusion, we have demonstrated how the anisotropy
of the vacuum field can lead to new types of interference
effects between the decay of close lying states. We have
related the interference terms to the antinormally ordered
correlation tensor of the vacuum. The anisotropy related
interferences are especially significant for emission from
atoms and molecules adsorbed on surfaces and thus our
study opens up the possibility of studying quantum in-
terferences in a totally new class of systems. We have
given an explicit example of decay between two conduct-
ing plates. We have also shown the role of interference
effects in two photon processes, where fluorescence is de-
tected following excitation by a coherent cw field. Clearly
the anisotropy related interference effects [20] would also
be important in considerations of higher order radiative
processes which could be studied in the same manner as
two photon processes.
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Research, Bangalore, India.
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