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Re-Entrant Spin Susceptibility of a Superconducting Grain
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We study the spin susceptibility x of a small, isolated superconducting grain. Because of the interplay
between parity effects and pairing correlations, the dependence of x on temperature T is qualitatively
different from the standard BCS result valid in the bulk limit. If the number of electrons on the grain
is odd, x shows a re-entrant behavior as a function of temperature. This behavior persists even in the
case of ultrasmall grains where the mean level spacing is much larger than the BCS gap. If the number
of electrons is even, x�T� is exponentially small at low temperatures.

PACS numbers: 74.20.Fg, 73.23.Hk, 74.80.Bj
By now it is well known that the properties of an iso-
lated, mesoscopic superconducting grain are quite differ-
ent from those of a bulk sample [1]. First of all, since
such a grain carries a fixed number, N , of electrons, its
behavior depends strongly on whether N is even or odd.
Second, fluctuation effects become important as the size
of the grain decreases. The interplay between parity and
fluctuation effects crucially depends on the ratio d�D0
of two characteristic energies: the mean level spacing
d and the bulk superconducting gap D0. As long as
the grain is not too small, d ø D0, the fluctuation re-
gion DT around the critical temperature Tc is narrow,
DT�Tc �

p
d�D0 ø 1, and the mean field description of

superconductivity is appropriate. Parity effects [2,3] ap-
pear at temperatures lower than a crossover temperature

Teff � D0� ln
q

8pD
2
0�d2 which, in the experiments [3],

is typically of the order of 10%–30% of Tc. The depen-
dence of Teff on D0 signals that the even-odd asymmetry
is a collective effect due to pairing correlations. As the
size of the grain is decreased, fluctuations start to smear
the superconducting transition [4]. The finite level spacing
suppresses the BCS gap in a parity-dependent way [5,6].
When d becomes of the order of D0, DT � Tc and the
BCS description of superconductivity breaks down even at
zero temperature [7]. The regime d * D0 is dominated by
strong pairing fluctuations [8–13].

The present-day interest in ultrasmall superconducting
grains was triggered by the experiments of Ralph, Black,
and Tinkham [14], who were able to contact a single,
nanometer-sized Al grain with current and voltage probes.
They obtained tunneling spectra that revealed the presence
of a parity-dependent spectroscopic gap, larger than the
average level spacing, which could be driven to zero by
an applied magnetic field. In this Letter we propose to
measure the temperature dependence of a thermodynamic
quantity—the spin susceptibility x —as a means to detect
both parity effects and pairing correlations. As we will
show below, pairing correlations give rise to a specific
temperature dependence of thermodynamic quantities.
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This enables a more quantitative investigation of fluctua-
tion effects [15].

Spin paramagnetism of small particles has been consid-
ered in the past [16] and very recently parity effects in
the susceptibility were measured for an ensemble of small,
normal metallic grains [17]. Spin susceptibility is very
sensitive to BCS pairing as well. Yosida [18] showed that,
due to the opening of the superconducting gap, x van-
ishes at zero temperature [19]. We will show that the com-
bined effect of parity and pairing introduces qualitatively
new features in the temperature dependence of x . Most
interestingly, these effects might be observed even in the
regime d * D0. The results of our work are summarized
in Figs. 1–3, where we plot x as a function of temperature
T for odd and even parity. In particular, we want to empha-
size that the odd susceptibility shows a re-entrant behavior
as a function of T for any value of the ratio d�D0. This
re-entrance is absent in normal metallic grains; it is a gen-
uine feature of the interplay between pairing correlations
and parity effects.

The BCS pairing Hamiltonian for a small grain can be
written as [5,8,9]

H �
X

n,s�6

�en 2 smBH�cy
n,scn,s 2 ld

X
m,n

By
mBn ,

(1)

where By
m � c

y
m,1cy

m,2. The indices m, n label the single
particle energy levels with energy em and annihilation op-
erator cm,s . The quantum number s � 6 labels time-
reversed equally spaced states (with an average spacing
�d � 1�n0, where n0 is the density of states at the Fermi
energy). The external magnetic field H couples to the
electrons via the Zeeman term; mB is the Bohr magneton.
We put the g factor equal to 2, ignoring any spin-orbit ef-
fects (see Ref. [20]). At the low magnetic fields of interest
here, we can neglect the orbital contribution to magnetic
energy, as it is smaller than the Zeeman energy by a fac-
tor ��kFr� �Hr2�F0� (r is the size of the grain and F0
the flux quantum). Finally l is the dimensionless BCS
coupling constant. Since the Hamiltonian contains only
© 2000 The American Physical Society
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FIG. 1. D0 ¿ d: Spin susceptibility as a function of tempera-
ture T�Tc for an odd (upper curve) and even (lower curve) grain,
respectively. The BCS result (middle curve) is reported for com-
parison. The susceptibility is normalized to its bulk high tem-
perature value xP � 2m

2
B�d. We used d�D0 � 0.1.

pairing terms, an electron in a singly occupied level can-
not interact with the other electrons.

The spin susceptibility of a grain with an even �e� or an
odd �o� number N of electrons is defined as

xe�o�T � � 2
≠2Fe�o�T , H�

≠H2

Ç
H�0

, (2)

where Fe�o � 2T lnZe�o is the free energy of the grain
and the partition function Z�T , N� should be evaluated in
the canonical ensemble. We will perform the calculation
with the help of a parity projection technique [21,22] and
by means of exact canonical methods based on Richard-
son’s solution [8]. The grand partition function reads

Ze�o�T , m� � �1�2�
X̀

N�0

emN�T �1 6 eipN �Z�T , N�

� �1�2� �Z1 6 Z2� . (3)

The partition function Z1 is the usual grand partition func-
tion at temperature T and chemical potential m1 � m.
The grand partition function Z2 describes an auxiliary
ensemble at temperature T and chemical potential m2 �
m 1 ipT ; it is a formal tool, necessary to include parity
effects. The chemical potential m will be placed between
the topmost occupied level and the lowest unoccupied level
in the even case, while it will be at the singly occupied level
in the odd case. Since we are interested in the evaluation
of fluctuation effects, it is convenient to express the grand
partition functions Z6 using the path integral formulation
of superconductivity [4,22,23],

Z6 � Z0
6

R
D 2D exp	

Rb
0 dt�Tr ln�1 2 Ĝ0

6D̂� 2
jDj2

ld �
R
D 2D exp	2

Rb

0 dt
jDj2

ld 

.

(4)

Here, b � 1�T and Z0
6 is the partition function for nonin-

teracting electrons. The matrix Green function Ĝ0
6 is given
by Ĝ
�0�
6 �en� � ��ivn 1 mBH�s�0� 2 �en 2 m6�s�z��21,

where vn is a fermionic Matsubara frequency, s�i� (i �
x, y, z) are the Pauli matrices, and s�0� is the identity. Fi-
nally, the matrix D̂ is given by D̂ � �D�2� �sx 1 isy� 1

H.c. A direct calculation of the partition function (4) is
impossible in general. Below, we first discuss two limit-
ing cases which are tractable analytically: d�D0 ø 1 and
d�D0 ¿ 1. Then we present the complete temperature de-
pendence of the spin susceptibility evaluating Eq. (4) nu-
merically for arbitrary values of d�D0, with the help of the
static path approximation [4].

Large grains (D0 ¿ d).—In this limit it is sufficient to
evaluate the partition function in a saddle point approxi-
mation, since fluctuations will not contribute significantly
[24]. As a result we find

xe�o �
m

2
B

2T

X
n

Z1 cosh22 E1,n

2T 7 Z2 sinh22 E2,n

2T

Z1 6 Z2

, (5)

where E6,n �
p

e2
n 1 D6. The saddle point values of D6

are found from the equations

1
l

�
X
n,s

d

4E6,n
th61

µ
E6,n 2 smBH

2T

∂
. (6)

The partition functions for the two ensembles are

Z6 � exp

(X
n,s

"
ln2

(
ch
sh

)
Es

6,n

2T
2

jn

2T

#
2

D2
6

ldT

)
, (7)

where Es
6,n � E6,n 2 smBH and jn � en 2 m.

At low temperatures T ø D0, the ratio Z2�Z1

can be calculated easily; one finds Z2�Z1 �
1 2

p
8pTD0�d2 exp�2bD0�. Parity effects are im-

portant if this ratio is �1, i.e., at temperatures T , Teff.
At temperatures Teff ø T ø D0, parity effects can be
ignored and the spin susceptibility is found to decrease
exponentially, as in the BCS case,

xe�o �
2m

2
B

d

s
2pD0

T
e2bD0 . (8)

For T ø Teff, Eq. (5) can be approximated as

xe �
8pm

2
BD0

d2 e22bD0 ; xo �
m

2
B

T
.

We see that xe remains exponentially small, as in the
BCS case (8), but with an exponent 22bD0 rather than
2bD0. This reflects the fact that excitations are actually
created in pairs. In odd grains, the unpaired spin gives
rise to an extra paramagnetic (Curie-like) contribution to
the spin susceptibility. As a result xo will show a re-
entrant effect at low temperatures (see Fig. 1). Although
the re-entrant behavior is essentially a single electron ef-
fect, we stress that it can be detected experimentally using
granular systems with many well-separated grains (to avoid
collective effects due to tunneling). Such systems contain
even grains as well, but their susceptibility is exponentially
small at the temperatures of interest; thus their contribu-
tion to the response of the system will be negligible.
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Ultrasmall grains (D0 ø d).—A reduction of the grain
size leads to a suppression of the gap D. For ultrasmall
grains with D0 ø d, the mean field approximation gives
D � 0: the grain behaves as a normal metal. The noninter-
acting, parity-dependent spin susceptibility can be found
from Eq. (5); see the topmost curves in Figs. 2 and 3.
Note, in particular, the monotonous dependence of xo

on T . The temperature scale at which parity effects ap-
pear is set by the average level spacing. If T ¿ d, par-
ity effects are exponentially small and xe�o�T � � xP�1 7

�2T�d� exp�2p2T�d��. In the opposite limit T ø d,
xe is exponentially small, xe�T � � �8m

2
B�T�e2bd, as we

need to excite an electron out of the topmost, doubly oc-
cupied single particle level to magnetize the grain. For an
odd grain, xo�T � � m

2
B�T at T ø d: the topmost level

is occupied by a single electron that gives a Curie-like
contribution.

The saddle point approach entirely ignores the fact
that the fluctuation region DT around Tc grows as the
size of the grains is reduced. Because of the pres-
ence of fluctuations, the behavior of small grains will
be different in a distinct way from normal metallic
grains. In the limit T ¿ d, both fluctuation and parity
effects are small; it therefore suffices to consider the
fluctuation correction dxfluc to xP , evaluating Z1,
Eq. (4), in Gaussian approximation. As a result, we
find dxfluc�xP � 2d�2T ln�T�D0�; hence xe�o�T � �
xP�1 7 �2T�d� exp�2p2T�d� 2 d�2T ln�T�D0��. Su-
perconducting correlations suppress the susceptibility;
due to its algebraic dependence on T this suppression
is stronger than the parity correction at temperatures
T * d ln lnd�D0. In the opposite limit, T ø d, fluctua-

FIG. 2. D0 # d: Re-entrant spin susceptibility as a function
of temperature for an odd grain in the static path approxima-
tion (solid lines); the topmost curve without re-entrance is the
noninteracting limit. The dashed lines are obtained by an exact
canonical calculation (see text), using N � 100 electrons and
a large enough maximum excitation energy (L � 40d). In the
inset the dependence of the susceptibility as a function of N and
L. Curves are labeled with �N , L�.
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tions are strong and the Gaussian approximation fails.
However, the susceptibility can still be obtained analyti-
cally by considering a few levels close to the Fermi energy
with a renormalized pairing interaction l̃ � 1� ln�d�D0�
[9,11]. Consider first a grain with an even number of
electrons. It costs an energy �d 1 d� ln�d�D0� to excite
an electron from the topmost, doubly occupied level to
the lowest unoccupied level. Correspondingly, the leading
temperature dependence of the spin susceptibility is

xe�T � � 8
m

2
B

T
e2bd�11ln21�d�D0�� 1 O �e22bd� . (9)

The even susceptibility is exponentially small, as in the
case of a normal metallic grain, but with an exponent
2bd�1 1 l̃�, rather than 2bd. Similarly, we find the
spin susceptibility for a grain with an odd number of elec-
trons

xo�T � �
m

2
B

T
�1 1 8e2bd�21ln21�d�D0��� . (10)

The paramagnetic contribution from the single spin domi-
nates at all temperatures below d. Compared to the
case of a normal metallic grain, the odd susceptibility
is nonmonotonous: upon lowering temperature, xo first
decreases due to superconducting fluctuations; at tempera-
tures T � d a re-entrant behavior sets in which persists
down to the lowest temperatures.

Re-entrant susceptibility.—The various limiting cases
discussed so far provide evidence for the appearance of
an anomaly in the spin susceptibility xo . For large grains
(D ¿ d) the mean field approximation, Eq. (5), leads to
the re-entrant behavior shown in Fig. 1. We will show that
this is a unique signature of pairing correlations which is
present even in ultrasmall grains. To this end we study
the complete temperature dependence of xe�o for arbitrary
values of the ratio d�D0.

FIG. 3. D0 # d: Spin susceptibility as a function of tempera-
ture for an even grain. As in the previous figure, the thin solid
line is the noninteracting limit.
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The physics of re-entrant susceptibility can be grasped
by evaluating Eq. (4), in the static path approximation
[4]. This amounts in retaining only the static fluctua-
tions (beyond the Gaussian approximation) in the path
integral. In Figs. 2 and 3 we show the results of this cal-
culation for the odd and the even cases, respectively. The
re-entrance in the odd case is visible even in systems with a
ratio d�D0 � 50 (!) and provides the signature of the exis-
tence of pairing correlations in an ultrasmall grain. The re-
sults are plotted for a system of N � 200 electrons at half
filling and the BCS coupling is chosen to fix the ratio d�D

(l � 0.1 2 0.2). The merit of the static path approxi-
mation combined with the analytic analysis in the limiting
cases is that it allows us to obtain a coherent quantitative
physical picture in the whole temperature range.

As a final check of our results we computed xo using
the exact solution of Ref. [8]. The result is presented in
Fig. 2 (dashed lines). As expected, the re-entrant effect is
slightly larger (�15%). In order to obtain this result we
considered all the different states with excitation energy up
to a cutoff L � 40d for a system with N # 100 electrons.
In the inset we show the scaling analysis for different N
and different energy cutoffs. This analysis becomes more
and more difficult upon increasing temperature because of
the exponential increase of the number of excited states
needed.

In this Letter we proposed to study the spin susceptibil-
ity of a metallic grain as a very sensitive probe to detect
superconducting correlations. For grains in the nanometer
size regime the odd spin susceptibility is a unique signa-
ture of pairing. In grains of dimensions of the order of few
nanometers as those studied in Ref. [14] the re-entrance
should be of the order of 10%–20% of the Pauli value and
it could be measured using the technique used in Ref. [17].
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