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Morphing the Shell Model into an Effective Theory
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We describe a strategy for attacking the canonical nuclear structure problem—bound-state properties
of a system of point nucleons interacting via a two-body potential—which involves an expansion in
the number of particles scattering at high momenta, but is otherwise exact. The required self-consistent
solutions of the Bloch-Horowitz equation for effective interactions and operators are obtained by an
efficient Green’s function method based on the Lanczos algorithm. We carry out this program for the
simplest nuclei, d and 3He, in order to explore the consequences of reformulating the shell model as a
controlled effective theory.

PACS numbers: 21.60.–n, 11.10.Ef, 24.10.Cn, 27.10.+h
In this Letter we argue that it may be possible to move
beyond the nuclear shell model (SM) to a more rigorous
treatment of the canonical nuclear structure problem of A
nonrelativistic point nucleons interacting via a two-body
potential. Our optimism is inspired by several recent de-
velopments. One is the success of the Argonne group’s
efforts [1] to predict the properties of light nuclei in effec-
tively exact Green’s function Monte Carlo (GFMC) cal-
culations, using an NN potential carefully fit to scattering
data and augmented by weaker three-body forces. This
suggests that SM failures have their origin in an incom-
plete treatment of the many-body physics, rather than in
the starting Hamiltonian. A second is the success of ef-
fective field theory (EFT) treatments [2] of the two- and
three-body problems. This work not only provides some
insight into why such a starting Hamiltonian is reason-
able, but has made the community more aware of the un-
controlled approximations implicit in the SM and other
approaches.

The SM’s strength is its explicit representation of
�60% of the wave function that resides at long wave-
lengths: the A-body correlations important to collective
modes are addressed by direct diagonalization. A third
development is the remarkable recent advances in such
SM technology, including Lanczos-based methods [3],
treatments of light nuclei involving many shells [4], and
Monte Carlo sampling algorithms [5,6]. The dimensions
of tractable SM spaces have risen by several orders of
magnitude in the past few years.

Such diagonalizations in a long-wavelength “included
space” could be an important piece of a rigorous effective
theory (ET) of nuclear structure in which the Hamiltonian
operating in an infinite Hilbert space
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is replaced by an Heff operating in a finite SM space. The
effects of high momentum components appear as effec-
tive contributions to the Hamiltonian and operators. The
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hope in nuclear physics, inspired by Brueckner’s treatment
of nuclear matter, is that the “excluded space” integration
might be carried out as a rapidly converging series in the
number of nucleons scattering at one time in high momen-
tum states. In this way the effective theory might prove
far more tractable than the original A-body problem in an
infinite Hilbert space.

The SM is a very successful model, but not a controlled
ET: SM effective interactions are most commonly deter-
mined phenomenologically and thus containing adjustable
parameters not connected with the underlying Hamiltonian
[7]. However, we will argue that it is possible to morph the
SM into a faithful ET while preserving the elegant technol-
ogy of the original model. The result is an ET with very
attractive properties, while the cost is a manageable degree
of additional complexity:

(1) The functional form of the SM effective interaction,
�abjHeffjgd�, is appropriate in an ET only in lowest order
and only if the calculation is restricted to a single shell [7].
In a faithful ET three-, four-, and higher-body operators
are successively added, and the matrix elements generally
carry, in addition to single-particle quantum numbers, an
index specifying the number of quanta carried by the re-
maining spectator nucleons.

(2) SM wave functions are orthogonal and normed to
unity. In ET the effective wave functions are naturally
defined as the restrictions of the true wave functions jCi�
to the model space. The norms are calculable and less than
unity, and orthogonality is lost.

(3) Because SM Heffs are usually derived phenomeno-
logically, there is no diagrammatic basis for generating the
effective operator. Thus empirical operator renormaliza-
tions must also be introduced, limiting the model’s pre-
dictive power. In an ET effective operators are calculated
diagrammatically, and are consistent with Heff.

In this Letter we describe the first steps in an effort to as-
sess the feasibility of an exact ET “SM”-like theory. The
approach is sketched in Fig. 1. The Hilbert space is di-
vided into a long-wavelength SM space, defined by some
energy scale LSM, and a high-momentum space. One can
© 2000 The American Physical Society
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FIG. 1. Cluster expansion of the effective interaction.

truncate the latter at some scale L` � 3 GeV, characteris-
tic of the cores of realistic potentials, as above this energy,
excitations make a negligible contribution. All correlations
within the SM space are included, but the high-momentum
correlations in the excluded space are limited to n body,
where n is the cluster size. Thus Figs. 1b and 1c give the
lowest and next-to-lowest approximations to Heff. Note
that one can view Fig. 1c as containing Fig. 1b, a density-
dependent two-body correction to Fig. 1b, and true three-
body terms. The pattern continues as n is increased: true
n-body terms are introduced and all lower-order results are
corrected to one higher order in the density r.

The diagram in Fig. 1b is almost the usual two-body ef-
fective interaction: the difference is that the noninteracting
A-2 nucleons do influence whether the A nucleons reside
below LSM, leading to a multivalued Heff. This point is
discussed in some detail in [7]. Figure 1c is the gener-
alization to a three-body cluster, and implies that some
technique is available to sum this three-body ladder non-
perturbatively.

If the SM space is defined as all harmonic oscillator
Slater determinants with E # LSM, Heff becomes trans-
lationally invariant and the ladder sums can be carried out
in relative coordinates, a considerable simplification. The
projection operator onto the high-momentum space Q thus
depends on LSM and the oscillator parameter b, where the
latter can be chosen to optimize the convergence in L` [8].

The resulting Bloch-Horowitz (BH) equation [9] is then

Heff � H 1 H
1

E 2 QH
QH ,

HeffjCSM� � EjCSM�, jCSM� � �1 2 Q� jC� ,

(2)

where jC� is the exact wave function and HjC� � EjC�.
These equations must be solved self-consistently because
Heff depends on the unknown eigenvalue E. The harmonic
oscillator appears only implicitly through Q in distinguish-
ing the long-wavelength SM space from the remainder of
the Hilbert space.

There is extensive literature on this and similar equations
[10,11]. Frequently H is divided into an unperturbed H0
and a perturbation H 2 H0, but well-known pathologies
due to intruder states can affect the resulting perturbation
expansion [12]. The approach explored here is nonpertur-
bative and uses the Lanczos algorithm to sum the n-body
ladders.

The Lanczos algorithm recursively maps a Hermitian
operator H of dimension N into tridiagonal form

Hjy1� � a1jy1� 1 b1jy2� ,

Hjy2� � b1jy1� 1 a2jy2� 1 b2jy3� , (3)

Hjy3� � b2jy2� 1 a3jy3� 1 b3jy4�, . . . .

If this process is truncated after n ø N steps, the result-
ing matrix contains the information needed to reconstruct
the exact 2n 2 1 lowest moments of jy1� over the eigen-
spectrum. One of the applications of this algorithm is in
constructing fully interacting Green’s functions [13] as a
function of E,

1
E 2 H

jy1� � g1�E� jy1� 1 g2�E� jy2� 1 · · · , (4)

where the gi�E� are continued fractions that depend on
ai , bi and where E appears only as a parameter.

Thus a simple procedure can be followed to solve the
BH equation:

(i) For each relative-coordinate vector in the SM space
jg�, form the excluded-space vector jy1� � QHjg� and
the corresponding Lanczos matrix for the operator QH.
Retaining the resulting coefficients ai , bi for later use,
construct the Green’s function for some initial guess
for E and then the dot product with �g0jH to find
�g0jHeff�E� jg�.

(ii) Perform the SM calculation to find the desired eigen-
value E0 which, in general, will be different from the guess
E. Using the stored ai , bi , recalculate the Green’s func-
tion for E0 and Heff�E0� then redo the SM calculation. The
process is repeated until the energy is fully converged.

(iii) Then proceed to the next desired bound state and
repeat the process. Note that it is not necessary to repeat
the Heff calculation. The eigenvalue taken from the SM
calculation is, of course, that of the next desired state,
yielding a distinct Heff for each eigenvalue.

The attractiveness of this approach is that the effec-
tive interaction part of the procedure, which is relatively
time consuming as it requires one to perform a large-basis
Lanczos calculation for each relative-coordinate starting
vector in the SM space, is performed only once. Heff

is then known as a function of E, allowing one to iterate
to self-consistency without further Lanczos work, and to
treat a series of bound states. To achieve self-consistency
the SM step must be repeated in the iterations, but this
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TABLE I. ET results for the 3He ground state wave function calculated with the Argonne y18
potential. Selected basis states are designated somewhat schematically as jN , a�, where N is
the total number of oscillator quanta and a is an index representing all other quantum numbers.

Amplitude
0h̄v 2h̄v 4h̄v 6h̄v 8h̄v ExactState

(31.1%) (57.4%) (70.0%) (79.8%) (85.5%) (100%)

j0, 1� 0.55791 0.55791 0.55791 0.55795 0.55791 0.55793
j2, 1� 0.00000 0.04631 0.04613 0.04618 0.04622 0.04631
j2, 2� 0.00000 20.48255 20.48237 20.48243 20.48243 20.48257
j2, 3� 0.00000 0.00729 0.00731 0.00730 0.00729 0.00729
j4, 1� 0.00000 0.00000 20.02040 20.02042 20.02043 20.02047
j4, 2� 0.00000 0.00000 0.11267 0.11274 0.11275 0.11289
j4, 3� 0.00000 0.00000 20.04191 20.04199 20.04208 20.04228
step is not time consuming and the convergence is rapid
(6–8 cycles, typically). For example, modern work sta-
tions can manage SM calculations of dimension 106 in
about 30 min.

The technical aspects of this approach are described
elsewhere [8,14]. Here we focus on the results for the
simplest nuclei, d and 3H, carrying the above process to
completion (two- and three-body ladders, respectively).

The binding energies and operator matrix elements for
simple systems like 3He can, of course, be calculated ex-
actly by other methods. The point of our work is not
to offer an alternative to these techniques for these nu-
clei, but rather to illustrate the conceptual differences be-
tween a faithful ET and the SM. We performed d and 3He
ET calculations for a series of SM spaces (2h̄v, 4h̄v,
6h̄v, and 8h̄v), in each case using the Lanczos Green’s
function algorithm to evaluate the two- and three-body
ladders (100 Lanczos iterations are more than sufficient)
and iterating the SM calculation until the results are fully
converged. The deuteron calculation is rather trivial; for
L` � 60h̄v the 3He calculation involves a dense matrix
of dimension �2 3 104, still quite modest by current SM
standards. (The Hamiltonian matrix is dense because rela-
tive Jacobi coordinates are used, rather than the m scheme,
together with standard Talmi-Brody-Moshinsky methods
[14,15].)

A correct ET should give results that are independent
of how one chooses to divide the Hilbert space, e.g., the
choices of LSM and b. The dependence on b is ex-
plored in [8]. In the case of LSM, the deuteron bind-
ing energies for the four chosen SM spaces agreed to
four places, 22.224 MeV (using

p
2 b � 1.6f and L` �

140h̄v). The exact result is 22.2246 MeV. The 3He
binding energy (for L` � 60h̄v) is 26.871 MeV, which
compares with the GFMC result of 26.87 6 0.03 MeV.
Because the effective interactions calculation is otherwise
exact, the results are variational in L`, approaching the ex-
act answer from above. The dependence is very smooth,
varying as exp�2aL2

`� [8]. This allows us to predict a 3He
binding energy for asymptotic L` of 26.906 MeV.

A more interesting test is the evolution of the wave
function as the SM space is enlarged. Table I gives re-
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sults for 3He. (The procedure for calculating the wave
function normalization is discussed below.) Unlike typical
SM calculations, the amplitudes agree over overlapping
pieces of the Hilbert spaces. As one proceeds through
2h̄v, 4h̄v, 6h̄v, . . . calculations, the ET wave function
evolves only by adding new components in the expanded
space. Consequently, as Table I shows, the wave function
norm grows.

This evolution will not arise in the standard SM because
the wave function normalization is set to unity regardless
of the model space. It will also not arise for a second rea-
son, illustrated in Table II. The three-body 3He matrix ele-
ments of Heff are crucially dependent on the model space:
a typical matrix �ajHeffjb� changes very rapidly under
modest expansions of the model space, e.g., from 2h̄v

to 4h̄v. Yet it is common practice in the SM to expand
calculations by simply adding to an existing SM Hamilto-
nian new interactions that will mix in additional shells. We
suspect the behavior found for 3He is generic in ET calcu-
lations: it arises because a substantial fraction of the wave
function lies near but outside the model space (e.g., see
Table I). An expansion of the model space changes the
energy denominators for coupling to some of these con-
figurations, and moves other nearby configurations from
the excluded space to the model space. Naively, relative
changes in effective interaction matrix elements of unity
are expected.

Now we turn to the question of operators. The stan-
dard procedure in the SM is to calculate nuclear form fac-
tors with bare operators, or perhaps with bare operators
renormalized according to effective charges determined
phenomenologically at q2 � 0, using SM wave functions
normed to 1. As we now have a series of exact effective

TABLE II. Selected BH three-body effective interaction matrix
elements for 3He, in MeV, illustrating the strong dependence on
the SM space.

2h̄v 4h̄v 6h̄v 8h̄v

�0, 1jHeffj2, 1� 24.874 23.165 20.449 1.279
�0, 1jHeffj2, 5� 20.897 21.590 21.893 22.208
�2, 1jHeffj2, 2� 6.548 22.534 24.144 25.060
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FIG. 2. The magnetic elastic form factors for the deuteron
(top) and 3He (bottom) calculated with the exact Heff, SM wave
functions normalized to unity, and a bare operator are compared
to the exact result (solid line). When effective operators and the
proper wave function normalizations are used, all results become
identical to the solid line.

interactions corresponding to different model spaces, we
can test the validity of this approach. The results for the
elastic magnetic form factors are given in Fig. 2. Even
though each SM Heff is, in a sense, perfect, the results for
bare operators are widely divergent at even modest mo-
mentum transfers of �2�f. This is not surprising: if an
operator transfers a momentum q * 2kF to the nucleus,
where kF is the Fermi momentum, the resulting amplitude
should reside primarily outside the SM space, where it con-
tributes only through effective pieces of the operator.

Clearly the effective interaction and effective operator
have to be treated consistently and on the same footing.
The bare operator Ô must be replaced by

Ôeff �

µ
1 1 HQ

1
Ef 2 HQ

∂
Ô

µ
1 1

1
Ei 2 QH

QH

∂

(5)

and must be evaluated between SM wave functions normed
according to

1 � �Ci jCi� � �CSM
i j1̂effjCSM

i � (6)

(and similarly for jCSM
f �). These expressions can be evalu-

ated with the Lanczos Green’s function methods described
earlier. When this is done, all of the effective calculations,
regardless of the choice of the model space, yield the same
result, given by the solid lines in Fig. 2.

It seems likely to us that many persistent problems in
nuclear physics—such as the renormalization of gA in b

decay—could be associated with the failure of the SM to
deal with the questions of wave function normalization and
effective operators. If so, then such issues will not be re-
solved unless we can morph the SM into a more controlled
theory where effective interactions and operators can be
addressed consistently.

In conclusion we point out that the ability to solve the
three-body problem as an exact ET in a SM-like model
space is already a significant step towards treating heavier
nuclei: it implies an ability to handle effective interactions
and operators correctly at the level of three-body clusters.
An attempt will be made to extend the current work to
A � 4 and then to imbed the results in such a SM-like
cluster expansion. Whether and how well such a Brueckner
expansion will converge are open questions.
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