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This Letter describes a measurement of the muon cross section originating from b-quark decay in
the forward rapidity range 2.4 < |y#| < 3.2 in pp collisions at /s = 1.8 TeV. The data used in this
analysis were collected by the DO experiment at the Fermilab Tevatron. We find that next-to-leading-order
QCD calculations underestimate b-quark production by a factor of 4 in the forward rapidity region.

PACS numbers: 14.65.Fy, 12.38.Qk, 13.85.Ni, 13.85.Qk
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Measurements of b-quark production at the Tevatron
have provided valuable information in the study of pertur-
bative QCD. Cross sections measured by both the DO [1],
and CDF [2] Collaborations in the central rapidity region
(I y?| < 1.5) are systematically higher (by afactor of 2 to
3) than the nominal values predicted by next-to-leading-
order (NLO) QCD [3]. This measurement extends these
studies to the previously unexplored rapidity region (2.4 <
| y#| < 3.2), and provides further insightsinto the discrep-
ancy between b-quark production measurements and theo-
retical predictions.

Forward muons are measured by the DO detector [4] us-
ing the small angle muon spectrometer (SAMUS) [5,6].
SAMUS consists of two identical systems, each with three
drift tube stations and a 1.8 T magnetized iron toroid, on
either side of the interaction region. The momentum reso-
lution of this system varies from =19% at 20 GeV/c to
=~25% at 100 GeV /c. Muons reaching the SAMUS cham-
bers traverse approximately 20 interaction lengths of ma-
terial, reducing the hadronic punch-through background to
anegligible level. This region does, however, face alarge
combinatoric background due to the flux of beam jet re-
lated particles. There are on average 6 to 14 hits per plane
in agiven bunch crossing, and the drift tubes near the beam
axis have an approximate 5% occupancy.

The data used in this anaysis come from special
runs taken at low instantaneous luminosity during the
1994-1995 collider run. The integrated luminosity for
these runs is 104 = 6 nb™!. The trigger required the
presence of an inelastic collision near the center of the
detector and at least one track in the SAMUS detector
with an apparent pj > 3 GeV/c pointing back to the
interaction region. Muon candidates were also required to
have an associated energy deposition in the calorimeter.
The hit multiplicity in each layer was also required to fall
below a maximum cutoff to improve background rejection
and lower the trigger rates to an acceptable level.

Muons are selected offline in the rapidity range 2.4 <
| y#| < 3.2, with p# < 150 GeV/c and pf > 2 GeV/c.
Single interaction events are selected by requiring only one
reconstructed vertex in an event, leaving an effective in-
tegrated luminosity of £ = 75 = 7 nb~'. Muon tracks
are required to have at least 15, out of an average of 18,
hits. To ensure a good momentum measurement, we re-
quire muonsto traverse a magnetic field integral of at least
1.2 T - m. Muons are aso required to be associated with
a tracklike object in the calorimeter with energy deposi-
tion consistent with that of a minimum ionizing particle.
With these cuts, the combinatoric background is deter-
mined using both data and Monte Carlo (MC) to be less
that 1%. The number of surviving muonsin this sampleis
NH* = 5106.

The muon trigger and track reconstruction efficiencies
are obtained using data and MC single muons, with de-
tector simulation using GEANT [7], superimposed onto real
minimum bias events. The trigger efficiencies for the hit
multiplicity cut [(31 = 2)%] and the calorimeter confir-
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mation [(95 * 1)%] are obtained from data, as are the of-
fline cut efficiencies for energy deposition [(94 *+ 3)%]
and number of hits on atrack [(96 = 2)%]. The overal
detection efficiency is 1% for p# = 2 GeV/c and reaches
a plateau of 10% for p¥ > 9 GeV/c. The MC momen-
tum scale and resolution are shown to be correct to within
2% by comparing the peak values and widths of the recon-
structed J /¢ signal from data [6] and MC.
The muon cross section is calculated as follows:

do* _ 1 NMfsmr
dp#dy“ £Ay/‘Ap’TL €

where fm: isacorrection factor that accounts for momen-
tum smearing, and e is the detection efficiency. As there
are high correlations between kinematic variables and cuts,
fsmr @nd e are determined by

N*fsmr _ 1 H(data)H(M Cgen)
€ €data H(MCreco) °

where €4, 1S the combined data-based efficiency of the
previously described cuts not simulated in the MC, and
the H's are matrices with elements corresponding to two-
dimensional histograms in the (pf,y*) plane. H(data)
is the data distribution after all offline cuts; H(MCgen) is
the generated Monte Carlo distribution, and H(MCreco) is
the reconstructed MC distribution with full detector simu-
lation and the same cuts as the data. The histograms are
segmented with 25 bins in p7 from 0 to 25 GeV/c, and
7 bins in rapidity from 2.0 to 3.4. The MC events are
weighted in an iterative procedure to match the corrected
pr and rapidity distributions of the data. This method is
found to give consistent results (within 3%) regardless of
the shape of the initial distribution. The resulting recon-
structed MC distributions also agree quite well with those
of the data for all kinematic variables of interest after the
weighting procedure.

The inclusive muon cross section in the forward rapid-
ity region (which includes both muon charges) is shown in
Fig. 1 and Table I. The systematic errors in this measure-
ment vary as a function of pf from 15 to 45%. They are
dominated by uncertainties associated with the momentum
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FIG. 1. Theinclusive muon cross section in the forward region

as a function of pf (per unit rapidity). The dashed line shows
the expected contributions from 7 /K decays.
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TABLE I. Forward muon cross sections (per unit rapidity).
pr (pr) at ok (m/K) o
(GeV/c) (GeV/c) [nb/(GeV/c)] [nb/(GeV/c)] fo [nb/(GeV/c)]
2-3 24 1474 + 33 + 265 1001 =+ 383
3-4 34 2825 == 75 £ 45 922 = 331 0.513 = 0.087 976 =38 =25
4-5 4.4 814 =+ 31 =+ 12 104 = 37 0.619 = 0.086 439 =*£19 =+ 92
5-6 54 282 == 15 = 42 13 = 05 0.656 + 0.078 176 =10 = 34
6—7 6.4 1172 = 080 = 19 017 = 0.06 0.671 = 0.080 775 =054 * 16
7-8 7.4 586 = 053 = 11 002+ 001 0.675 = 0.081 394 =036 = 0.83
8-9 84 317 = 034 = 063 0.685 = 0.075 217 =023 = 050
9-11 9.8 130 = 013 * 029 0.697 = 0.070 0.906 = 0.091 = 0.22
11-15 124 0.367 = 0.039 = 0.11 0.718 = 0.067 0.264 = 0.028 = 0.080
15-20 16.7 0.057 = 0.011 = 0.026 0.749 = 0.062 0.043 = 0.008 = 0.020

smearing correction [(6-41)%], the single interaction lu-
minosity (10%), and the trigger efficiency (8%).

The contributions to this cross section from cosmic rays,
hadronic punch-through, and W/Z decay are negligible
(determined using both data and MC). The pion and kaon
decay contribution is obtained using ISAJET [8], which we
find to be in agreement with the charged particle cross
section measured in the central region [9]. The excess
above the 77 /K contribution is attributed to » and ¢ quark
decay. The fraction of this excess due to b quark de-
cay ( f5) can be obtained using the transverse momentum
spectrum of the muons relative to that of an associated jet
(p"), but, because of our jet reconstruction threshold of
Er > 10 GeV, only (7.9 = 0.8)% of the eventsin the for-
ward region have a reconstructed associated jet. We must,
therefore, rely on aNLO QCD MC to determine f},.

In this Monte Carlo, b and ¢ quarks are generated ac-
cording to the pr and rapidity distributions of NLO QCD
calculations [3] using MRSR2 parton distribution func-
tions [10], quark masses m;, = 4.75 GeV/c? and m. =
1.6 GeV/c?, with renormalization and factorization scales

p = po = +/m2 + p7. The four momenta of the quarks
are input to an ISAJET MC which simulates initial and
final state radiation, as well as quark fragmentation and
decay. The theoretical uncertainty is determined by vary-
ing the parameters m;, from 4.5 to 5.0 GeV/c?, m. from
1.3t0 1.9 GeV/c?, and wu from wo/2 to 2ug. The Pe-
terson fragmentation parameters [11] (e, = 0.006, €. =
0.06) are aso varied by 50%, as are the branching ra-
tios within their errors [12]. This simulation predicts that
8.5% of the muons should have a reconstructed associated
jet, which is consistent within errors with what is found
in the data.

We check the validity of this MC by comparing its
prediction for f, to that determined from our entire
1994-1995 data set. 31000 forward muons with an
associated jet are selected from low pr single muon and
muon + jet triggers. The trigger requirements keep the
physics content of this sample the same as that of the
cross section sample. The full sample is unsuitable for a
cross section determination, however, as there is a large
uncertainty in its normalization due to the various trigger

thresholds and prescales, and luminosities that the data
were taken with.

The b-quark fraction is determined by fitting the p¥'
distributions (in various ranges of pf) to the expected
shapes from b-quark, c-quark, and 7 /K decay (seeFig. 2)
as determined from I1ISAJET MC. The shape for 77 /K de-
cays was found to agree with the data distribution sample
in the pf range 0.5-1.0 GeV /¢ which is dominated by
these decays. Asisshownin Fig. 3, the NLO QCD Monte
Carlo agrees quite well with the measured f), obtained in
the pi! fits of both the entire data sample, and the sub-
set of events from the cross section sample that have a jet
associated with a muon. Having shown that the MC is re-
liable for events with muons with jets, we assumeitisaso
reliable for inclusive muons.

Q 600 3 GeV/c < p# < 4 GeV/c
> 00 & f, = 0.38 % 0.01
> 400 X2/ndf = 32/27
S 300 E
> 200 ©
o
- : . - -
“g’ 100 5 _»: e S -- A -4
0 F-r \--f_l/_‘(>\ | T \"T"w“';lr'—‘l\i';ii‘;x vir‘#“u Y _—
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225
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FIG. 2. Datap' distributionsfor two selected p7 ranges. The
solid line shows the fit to the data, with broken lines show-
ing contributions from b-quark (dashed), c-quark (dotted), and
/K (dot-dashed) decay. f, isthe b-quark fraction after /K
subtraction (errors are statistical only).
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FIG. 3. f, for muons with an associated jet as measured from
data p¥*! fits (triangles and circle) and as predicted by the NLO
QCD MC (dot-dashed curve). The prediction of f;, for muons
without the jet requirement is shown by the solid curve with
uncertainties indicated by dotted curves.

Subtracting the 7/K contribution from the inclusive
muon cross section and multiplying the result by the QCD
MC predictions for f, gives the cross section for muons
originating from b quark decay. Our measurement, which
includes both muon charges, and sequential b — ¢ — u
decays, is shown in Fig. 4 and Table I.

The systematic uncertainties of this measurement in-
clude those of the inclusive muon cross section, with ad-
ditional uncertainties due to f;, and the /K subtraction.
The contribution to the muon cross section from 7 /K de-
cay is predominantly in the low p7 bins. Conservatively
assuming that thedatainthe2-3 GeV/c bin(seeFig. 1) is
entirely due to /K decay, we determine that the ISAJET

: ‘
24 < Iy1<3.2

10220 R ey .

{ A inclusive muon

> A ¢ o muon + jet

[ S A

S0 b P 4

~
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FIG. 4. The cross section for muons from b-quark decay as a
function of p7 (per unit rapidity) as measured with the inclusive
muon sample (triangles) and its subsample of events that have
a jet associated with the muon (circles). The solid curve is the
NLO QCD prediction, with the dashed curves representing the
theoretical uncertainties.
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normalization is correct to within a factor of 1.35. This
factor is used to determine the uncertainty in the higher
p¥ bins,

Also shown in the figure is a cross check of our mea-
surement. We determine the cross section using the same
events, but now reguire the muon to be associated with a
jet, and use the values for f, that were determined in the
p! fitsto the entire datasample. We obtain the same cross
section (within statistical errors) as we do in the inclusive
muon analysis.

The NLO QCD predictions for the forward muon cross
section from b-quark decay are also shown in Fig. 4 asa
function of p. They match the shape of the measured
cross section fairly well, but are approximately a factor of
4 lower than the data.

By combining the forward cross section with that of
a previous DO measurement in the central rapidity range
(Iy*] < 0.8) [1] we can study the rapidity dependence of
b quark production. Our measurement of the cross section
for muons from b quark decay as a function of rapidity
(do} /d| y*|) is shown in Fig. 5 for both py > 5 GeV/c
and py > 8 GeV/c. The ratios between data and theory
are shown in Table Il. We find that next-to-leading or-
der QCD calculations do not reproduce the measurements.
There have been some recent theoretical attempts to ac-
count for this discrepancy [13,14], but none have been suc-
cessful in bringing the predicted cross sections up to the
measured values.

In summary, we have measured the inclusive muon
cross section, and the cross section for muons originat-
ing from b quark decay, in the forward rapidity region
of 2.4 < |y#*| < 3.2. We find that next-to-leading order
QCD calculations underestimate » quark production by a
factor of 4 in this region.

—~ r #>5GeV/c

_g 102? R pT /
A N 4

e} T

D10 £ NLO QCD, MRSR2,
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FIG. 5. The cross section of muons from & quark decay as a
function of | y#| for p; > 5 GeV/c, and p; > 8 GeV/c. The
solid curves are the NLO QCD predictions, with uncertainty
bands shown by the dashed lines.
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TABLE II. The cross section of muons from b-quark decay
compared to NLO QCD. Errors are statistical and systematic
added in quadrature.

Py >5GeV/c

Measured Theory

Rapidity (y) ap (nb) ap (nb) Ratio
0.00-0.80 0.40 89 =16 36 2504
2.40-2.65 253 435+ 94 12 3.6 = 0.8
2.65-3.20 2.85 305+ 6.6 84 36 £0.8
pr > 8GeV/c

Mesasured Theory

Rapidity (y) o) (nb) o) (nb) Ratio
0.00-0.80 0.40 20.1 = 3.7 6.6 30 £ 0.6
2.40-2.65 253 79 22 16 48 1.3
2.65-3.20 2.84 41 = 1.1 0.99 40 £ 1.1
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