
VOLUME 84, NUMBER 3 P H Y S I C A L R E V I E W L E T T E R S 17 JANUARY 2000

542
Weak Localization in Antidot Arrays: Signature of Classical Chaos
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We study, experimentally and theoretically, quantum weak localization (WL) corrections to the clas-
sical magnetoconductivity of two-dimensional ballistic systems with regular and disordered patterns of
dense antidots. We analyze the observed temperature and flux dependences of the WL using different
theoretical models for the chaotic dynamics and dephasing rates. The measured resistivity curves, which
deviate from those of diffusive systems, reflect chaotic motion and correlations in the classical dynamics
of electrons in the antidot landscape. The results support the significance of the Ehrenfest time as a
relevant time scale for ballistic WL.
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Quantum interference effects in small phase-coherent
conductors represent key features of mesoscopic behav-
ior and have given rise to a variety of novel, experimen-
tally observable effects. Among those, weak localization
(WL)—a decrease in the average conductivity with re-
spect to the classical one—is a prominent example. This
quantum effect which was initially observed in disordered
samples can be attributed to the constructive interference
of diffusive time-reversed trajectories backscattered from
impurities [1]. WL in ballistic conductors has been stud-
ied, both experimentally and theoretically, mainly for small
phase-coherent cavities where the elastic mean free paths
exceed the relevant device dimensions considerably [2].
Hence backscattering arises from specular reflections at the
boundaries and WL should carry features of the underlying
ballistic classical dynamics, namely, chaotic, integrable,
or mixed.

Large antidot arrays built from a high-mobility two-
dimensional electron gas (2DEG) probably represent the
closest ballistic counterpart to impurity scattering in a dis-
ordered system. The regular arrangement of antidots on
a lattice, which act as artificial potential pillars, has led
to a variety of new effects ranging from commensurability
peaks [4] in the classical magnetoresistance up to quantum
oscillations at subkelvin temperatures [5].

Here we focus on ballistic WL (BWL) due to backscat-
tering at the antidots [6] arranged both on a regular lattice
and randomly. In this case the usual diffusive WL (DWL)
theory for disordered systems is no longer valid: It is well
suited to describe coherent backscattering from (pointlike)
impurities where the scattering is regarded as a quantum
process [1]. This provides a “quantum splitting” of clas-
sical trajectories at impurities allowing the formation of
pairs of time-reversed backscattered paths. Moreover, an
electron rapidly loses memory of its previous state; i.e.,
the motion can be regarded as a delta-correlated, diffusive
process.

Antidots with a diameter a considerably larger than the
Fermi wavelength lF act as classical scatterers. There-
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fore, WL in antidot structures calls for a generalization
of WL theory beyond the diffusion approximation in or-
der to account for correlations in the ballistic classical
dynamics. In this context semiclassical methods [2,3,7]
are attractive, since they provide a close link between the
classical dynamics and quantum effects. However, ap-
proaches, which exploit the genuine semiclassical limit
h̄ ! 0 by using stationary-phase arguments, turn out to
be too crude to correctly account for BWL [8]. Accord-
ing to suggestions by Argaman [9] and Aleiner and Larkin
[10], it is the exponential separation of initially close orbits
in a chaotic system with classical scatterers like antidots
which provides a mechanism for a minimal wave packet
of size lF to split into two parts, which then follow time-
reversed paths before they interfere constructively upon
return. This approach goes beyond the standard semiclas-
sical stationary-phase arguments introducing another rele-
vant time scale for WL in a chaotic system: the Ehrenfest
time [11] for the spreading of the wave packet over a dis-
tance of the size a of the antidots,

tE � l21 ln�a�lF� ; (1)

l is the mean Lyapunov exponent of the classical system.
In this Letter we compare experimental results for BWL

in antidot structures with a corresponding theoretical
analysis applying to both regular and irregular antidot
patterns. The measurements show the role of the antidots
for backscattering and, more importantly, signatures of
chaotic dynamics and the Ehrenfest time.

The samples were prepared from high-mobility
GaAs�AlGaAs heterostructures with an electron mo-
bility m � 110 m2�V s and a charge carrier density
of ns � 4.9 3 1015 m22. This gives estimates for
the Fermi velocity VF , the transport time t, and the
related transport mean free path ltr � VFt of the unpat-
terned sample as VF � h̄

p
2pns�m� � 2.95 3 105 m�s,

t � mm��e � 4.3 3 10211 s, ltr � 13 mm. The an-
tidots were defined by electron beam lithography and
reactive ion etching [12]. An electron micrograph of a
© 2000 The American Physical Society
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disordered antidot distribution (DA) with a mean period
of d � 300 nm is shown in the upper inset in Fig. 1.
The diameter of the antidots is a � 200 nm, significantly
larger than the Fermi wavelength lF � 36 nm. Hence
the antidots are classical scatterers.

The major experimental result to be explained theoreti-
cally is displayed in Fig. 1. The lower inset shows the
negative quantum correction, Ds, to the classical conduc-
tivity, s2, as a function of magnetic field B. It was ex-
tracted from the experimental data by subtraction from the
conductivity at high temperatures where quantum effects
are suppressed. As shown in Fig. 1 the temperature de-
pendence of Ds is well fitted by an exponential law:

Ds�T �jB�0 � exp�2T�Tc� (2)

for a wide range of 1.2 K # T # 44 K with Tc � 14.5 K
[13]. We find the same exponential dependence with Tc �
12.5 K for a similar device with a regular array (RA) of
antidots with period d � 300 nm. These measured ex-
ponential dependences can hardly be explained within the
standard DWL theory which predicts in 2D [1,14]

Ds � 2G ln

√
1 1

tf

t

!
tf¿t

� 2G ln

√
tf

t

!
,

G � e2�ph .
(3)

According to Eq. (3), the temperature dependence, which
is mainly determined by the properties of the phase relaxa-
tion time tf�T �, is expected to be rather logarithmical
than exponential. The observation of WL up to anoma-
lously high temperatures T � 40 K clearly suggests that
reflection at the antidots with mean distance d ø ltr is the
dominant mechanism for backscattering and momentum
relaxation and calls for a theory of BWL.

In the following we analyze the anomalous T depen-
dence based on the approach by Aleiner and Larkin men-
tioned above. It accounts for correlations in the chaotic
ballistic dynamics in the “Lyapunov region” for time scales
up to the Ehrenfest time tE by replacing the diffusion oper-
ator through the regularized Liouville operator, the Frobe-
nius-Perron operator [10]. For times larger than tE the
classical mechanics is assumed to be uncorrelated and
is treated as diffusive again. The result for BWL then
reads [10]

Ds � 2G exp�2�tE�tf� �1 2 l2��l2tf�	
 ln�tf�t� .

(4)

Here, l2 � �dl�t1�dl�t2�� characterizes fluctuations in
the Lyapunov exponent l. Correlations in the chaotic dy-
namics are incorporated in the exponential prefactor, while
the diffusive motion on longer time scales is reflected in
the logarithm. Equation (4) holds for a2 $ lFd, which is
fulfilled in the experiment.

To estimate l for the antidot arrays we use results for
3- and 4-disk problems neglecting corrections to l from
scattering at distant antidots. We obtain [15]

l � �VF�d� ln�4.276d�a� � 1.8 ps21. (5)
FIG. 1. Comparison of the experimental (filled dots and
dashed line) and theoretical (solid line T and dotted lines
UC , UC0 ) temperature dependence of the weak localization
correction Ds. The line T is the result of ballistic WL, Eq. (9),
and the lower and upper dotted curves, UC and UC0 , show
results of the usual WL theory, Eq. (3), for diffusive systems.
For T . 15 K the slope of the curve T is adjusted by choosing
C � 2.3 ns K2. The curves UC and UC0 correspond to the
same C and to C0 � 0.13C, respectively (see text). Upper
inset: Electron micrograph of a disordered antidot array with
average period of 300 nm. Lower inset: Ds in units of e2�h
as a function of magnetic field (in tesla) for temperatures
T � 1.2, 4, 8, 11.5, 17.5, 28, and 44 K.

This estimate agrees with numerical simulations for RAs
[16]. From Eq. (1) we find tE � 0.94 ps corresponding to
a length scale for the Lyapunov region of VFtE � d.

We continue with the discussion of the temperature de-
pendence tf�T � in a 2DEG with antidots. Two main
mechanisms are responsible for the decay of phase correla-
tion, prevailing at different temperatures: electron-electron
(e-e) interactions (T , 10 K) and electron-phonon (e-ph)
interactions (T . 10 K), giving an overall dephasing rate
t

21
f � t21

e-e 1 t
21
e-ph.

At lower temperatures VFtf�T � � VFte-e�T � ¿ d and
the electronic motion can be considered as diffusive over
the distance of the coherence length while estimating the
role of e-e interactions. Following this hypothesis we
apply the theory by Altshuler and Aronov on dephasing
in 2D dirty systems [14]:

t21
e-e � �kBT�h̄g2� ln�g2�2�; g2 � h�e2s2 . (6)

The classical conductivity s2 � e2nstant�m� is given by
the Drude formula, and tant # d�VF � 1 ps is the anti-
dot scattering time. Considering the geometry of the anti-
dot billiards, a more precise value of tant � 0.3 ps can be
found for RAs. This estimate holds also true for DAs, at
least for a slightly disordered arrangement, with the same
antidot density. Correspondingly, one finds s

RA
2 � s

DA
2 ,

in accordance with experiment when comparing s2 for the
DA and RA samples. The Drude formula gives g2 � 15
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and r2 � s
21
2 � 1.73 kV for the parameters of the ex-

periment. This is in reasonable agreement with the mea-
sured (classical) resistivity of 1.89 kV for the DA sample
at B � 0 and high T � 44 K where Ds ! 0. Equa-
tion (6) then gives te-e � 57 ps�T �K�.

From the 2D diffusion coefficient, D2 � V 2
Ftant�2 �

0.013 m2�s, we obtain at low T , where tf � te-e, the
mean square displacement during the time tf: �r� �p

D2te-e�1 K� � 2.5d � 10VFtant. Thus the electrons
can be regarded as moving diffusively over the coherence
length justifying our a priori assumption.

Equation (6) holds true and the theory of dephas-
ing in dirty systems is applicable, if the inequalityp

�kBT ���h̄D2�Lz ø 1 is satisfied [14]. For a thickness
Lz � 50 nm and the value for D2 of the 2DEG we find
that the condition is valid up to T � 25 K. At T . 25 K
one deals with the intermediate case between e-e interac-
tions in a dirty system and the pure Coulombic interaction
[17]. However, a detailed analysis of this intermediate
regime is beyond the scope of the present paper and we
restrict ourselves to the expression (6).

Finally we discuss the dephasing due to the e-ph interac-
tions which gets important at high temperatures. Keeping
the hypothesis of diffusive motion the T dependence of the
e-ph contribution is similar to

te-ph�T � � C�T2. (7)

Equation (7) reflects the interaction of electrons in 2D with
transverse 3D phonons in the presence of the vibrating
walls of the antidots [18]. In general, we cannot a priori
use any standard model to calculate the constant C. An
estimate of C is particularly complicated for antidot struc-
tures: in the temperature range of interest the phonons have
no sufficient free space between the antidots to propagate
in the usual manner, since their wavelength is of the order
of several d. In the high-T regime we thus treat C as the
only adjustable parameter.

Consider now the exponent in Eq. (4) in view of the
values for l, Eq. (5), te-e, Eq. (6), and te-ph, Eq. (7).
Given l � l2 [10], we have l2te-e�l2 � lte-e ¿ 1 for
T , 30 K. Based on this inequality and including te-ph
[C in Eq. (7) will be specified below] we can assume

ltf ¿ 1 , (8)

up to high temperature [Eq. (8) is verified later]. Equa-
tion (8) shows that the effect of fluctuations of l is negli-
gible in the context of the experiment. We hence can omit
them in Eq. (4) using the simplified expression for BWL,

Ds � 2G exp�2tE�tf� ln�tf�tant� , (9)

where we further have replaced t by tant.
We now compare the measured dependence Ds�T � with

our calculation based on Eq. (9) accounting for the esti-
mates of l, tE , and tf�T �. By variation of C we adjust
the slope of the theoretical line to the experimental one
at 15 K # T # 35 K (see Fig. 1). The adjustment yields
C � 2.3 ns K2. Up to T � 15 K, the temperature depen-
dence is predominantly given by e-e interaction [see case
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(i) in the upper inset in Fig. 2]. In this T regime the slope
of the theoretical curve (full line in Fig. 1), which shows
considerable agreement with experiment, is rather insensi-
tive to te-ph and, consequently, to the constant C. Summa-
rizing, we have found a reasonably good agreement of the
experimental and theoretical slopes over nearly the entire
wide temperature range. Simultaneously, our presumption
(8) is verified [see case (ii) in the upper inset in Fig. 2].

In contrast, the usual theory for DWL, Eq. (3), which
corresponds to tE � 0, cannot adequately describe the ex-
periments. There exists no choice for C in Eq. (7) for
te-ph which would lead to a reasonable agreement with
the experimental data over the whole temperature range.
The lower dotted curve UC0 in Fig. 1 shows the result
for C0 � 0.13C which comes closest to the experimental
slope. However, the C0 chosen then leads to unrealistically
small values of the dephasing time. For T � 20 K one
has tf � 2tant and for T . 20 K follows tf , 2tant,
resulting in destruction of the coherence for the short-
est trajectories upon return and, in contrast to the experi-
ment, excluding any possibility to observe WL at such high
temperatures. Also the application of the alternative law
te-ph � C̃�T3 cannot at all restore the exponential depen-
dence of Ds�T � [19].

Hence the observed exponential temperature behavior
shows signatures of BWL. It offers moreover the princi-
pal possibility to extract tE and thereby the classical Lya-
punov exponent of the electronic antidot billiard from the
quantum WL correction. The difference in the absolute

FIG. 2. Experimental (filled dots and dashed line E) and theo-
retical (solid line T) temperature dependences of the half-width
of the ballistic-WL magnetoconductivity peak. The lower inset
depicts its magnetic field dependence calculated from Eq. (9) at
the same temperatures as in the lower inset in Fig. 1. Upper in-
set: Ratios of (i) the electron-phonon [Eq. (7), C � 2.3 ns K2]
to the electron-electron [Eq. (6)] dephasing rates (left axis, solid
line), and (ii) the total dephasing rate to the inverse of the mean
Lyapunov exponent (right axis, dotted line).
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theoretical and experimental peak heights in Fig. 1 is about
30%. This gives a hint that the ratio tf�1 K��tant is un-
derestimated which we consider as an acceptable error of
the rough estimates. However, the theoretical models used
yield values for tf and coherence length in agreement with
other experimental data on GaAs�AlGaAs samples [20].

Besides the analysis of WL at zero field we also studied
experimentally and theoretically the B-field dependence.
Our theoretical results are based on the expression [10]

Ds � 2G exp� 2tE�tf� �ln�l2
B�4D2tant�

2 C�1�2 1 l2
B�4D2tf�	 , (10)

in the same framework as above. In Eq. (10),
lB �

p
ch̄�eB denotes the magnetic length and C

is the digamma function. The theoretically obtained
WL profiles are depicted in the lower inset in Fig. 2.
They agree with the experimental profiles in the lower
inset in Fig. 1. The T dependence of the half-width of
Ds�B� is shown as the full curve in Fig. 2 in comparison
with experimental results (marked as dots) for the DA
sample. Besides the behavior at low temperature the
theoretical half-width is in quantitative agreement with
the experiment.

Finally we discuss the experimental finding that the tem-
perature dependence of the WL is rather independent of
the arrangement (ordered or disordered) of the antidots.
We emphasize that we can explain these similar results
of RA and DA structures in the framework of the same
theory. Both systems are similar insofar as their antidot
density is the same, as they exhibit ergodic dynamics and
show self-averaging behavior due to the effects of dynam-
ical chaos and residual impurities. Therefore it is natural
to assume that the mean Lyapunov exponent, which en-
ters into the expression for Ds�T �, is not sensitive to the
precise formation of the antidots [16]. We believe that the
antidot arrangement (DA or RA) affects the fluctuations l2
in l. However, as shown above, these fluctuations can be
neglected in the WL expression (4) under the experimental
conditions. Therefore Eq. (9), which is based on the mean
l only, serves as a common footing to explain the same
dependence Ds�T � in RA and DA structures.

To summarize, we have studied the weak localization
correction to the classical conductivity of ballistic arrays
of large and dense antidots. We find a manifestation of
classical correlations in the chaotic electronic motion of
the experimentally observed weak localization for regular
as well as disordered patterns of antidots. The experiments
presented indicate a way to evaluate the Ehrenfest time
and the Lyapunov exponent of the antidot arrays from the
dependence Ds���tf�T ����. Thus our results can also be of
broader interest in the context of chaotic billiards and other
systems exhibiting chaotic transport.
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