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Interplay between Atomic and Mesoscopic Order on Gold Vicinal Surfaces
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Self-organization on Au�1, 1, 1� vicinal surfaces provides a unique opportunity to study the interplay
between atomic and mesoscopic order. First, experimental results demonstrate the different interactions
between steps and surface reconstruction on Au�1, 1, 1� vicinal surfaces. Depending on the step atomic
structure, lines of discommensurations are found to be either parallel or perpendicular to the step edges.
This leads to a complete understanding of the mesoscopic self-organization on theses surfaces, which
drastically depends on the step structure. This points out the crucial role played by the edge energy cost
which can monitor the faceting periodicity in a wide range of values.

PACS numbers: 68.35.Bs, 05.65.+b, 61.10.– i, 68.35.Md
Self-organization on solid surfaces has been recognized
as a promising alternative for growing uniform nanostruc-
tures with regular sizes and spacings [1]. Despite the fact
that a great variety of systems and geometries are con-
cerned [2–4], long range elastic interaction is the common
physical driving force of this phenomenon [5]. In the case
of the spontaneous periodic faceting of some stepped sur-
faces [5–7], the elastic strain field results from a discon-
tinuity of the intrinsic surface stress tensor which appears
on the facets frontier. A theoretical prediction is that, in
such surfaces, the period results from a compromise be-
tween the energy gain induced by bulk elastic relaxation
and the local energy cost of the facet edges [8]. However,
despite a lot of work that has been concentrated on elastic
relaxations, little is known about boundary energy terms.

The self-organization of Au�1, 1, 1� vicinal surfaces pro-
vides a unique opportunity to point out for the first time
the crucial role of the boundary energy cost. It is well
known that the mesoscopic order on these surfaces drasti-
cally depends on the step microstructure [7]. Long range
order distances of about 200 nm are observed for surfaces
with �1, 1, 1� step edges, whereas for those with �1, 0, 0�
step edges, periods are about 7 nm. In this Letter, we
determine the microscopic structure at a facet boundary
for both kinds of surfaces and deduce the local bound-
ary energy cost which is found to be strongly different for
both types of vicinal surfaces. Finally, in the framework
of Marchenko’s model, it is shown that this difference in
the boundary energy cost accounts for the observed meso-
scopic morphologies. It is an illustration of how the step
atomic structure interplays with the mesoscopic order in
the self-organization phenomena.
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The first stage of this work consists in the precise
determination of the atomic arrangement for both kinds of
vicinal surfaces. First, we present a complete struc-
tural determination of a Au�1, 1, 1� vicinal surface with
�1, 0, 0� steps, using grazing incidence x-ray diffraction
(GIXD) and scanning tunneling microscopy (STM). The
Au�11, 9, 9� surface is misoriented by an angle of 5.57±

towards a �2, 1̄, 1̄� azimuth. The sample is a disk of
10 mm in diameter and 2 mm in thickness, polished to a
mirrorlike surface. The surface has been prepared in situ
in a UHV chamber by repeated cycles of sputtering and
annealing at a temperature of about 800 K [7]. This
leads to a stable morphology, consisting of a periodic
succession (period about 7 nm) of one large terrace
(width w1 � 4.2 nm) followed by one (structure 1) or two
(structure 2) short terraces (w2 � 1.4 nm) (cf. Fig. 1a).
The proportion p of structure 2 is found to be about
70%. Previous investigations [7] have not evidenced any
reconstruction on this surface. GIXD experiments were
performed in a UHV diffractometer on beam line DW 12
at LURE-DCI.

Results of GIXD measurements are shown in
Figs. 1b–1d. We use the hexagonal (H, K , L) coor-
dinate system convenient for the �1, 1, 1� fcc terrace
structure [9]. Performing H scans (scans perpendicular
to the step edge) at different L values (L direction is per-
pendicular to the terraces) reveals that all diffraction rods
are parallel and oriented perpendicular to the macroscopic
surface (cf. Fig. 1b). The slope of the rods (5.7±) and the
distance between them giving a periodicity of 6.9 nm are
both consistent with the expected morphology shown in
Fig. 1a. Surprisingly, experimental spectra, all obtained
© 2000 The American Physical Society 5367
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FIG. 1. Faceted Au�11, 9, 9� surface: (a) 50 nm 3 50 nm
STM image; all steps are of monoatomic height going down-
wards from bottom left to upper right; (b) H positions versus L
of the main peaks observed on the H scans at K � 2. Straight
lines are guide to the eyes; (c) and (d) the open circles display
typical GIXD H-scans recorded at anti-Bragg conditions but
for different values of K and L. Lines display the calculated
spectra deduced from our model; (e) schematic top view (upper
part) and side view (lower part) of the atomic structure showing
the surface reconstruction on the large terrace. The �1, 0, 0�
step (�1, 1, 1� step) has been highlighted by a white rectangle
(triangle). The stacking sequence of topmost atoms, hcp, or fcc
is indicated above each terrace.

by scanning in the anti-Bragg conditions but at different
positions of the reciprocal space, drastically differ in their
intensity distribution (see Figs. 1c and 1d). The origin of
such a behavior has to be searched in the atomic surface
structure. It is well known that on the Au�1, 1, 1� surface,
topmost atoms are uniaxially compressed along one of
the three equivalent close-packed directions, leading
to discommensuration lines associated with the famous
22 3

p
3 reconstruction [10]. These lines separate regions

of regular face centered cubic (fcc) stacking from regions
of hexagonal close packed (hcp) faulted stacking. On
the Au�11, 9, 9� surface, we did not observe any satellite
peak characteristic of the usual Au�1, 1, 1�-22 3

p
3 re-

construction. Following recent findings on the interaction
between steps and reconstruction on a Au�1, 1, 1� surface
[11], we developed an atomic model of the surface in
order to reproduce the GIXD spectra. This model includes
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a discommensuration line parallel to the step edges on
the larger terraces, which respects the surface symmetry
but which is not in any usual direction known for the
22 3

p
3 reconstruction. In our model, atoms of the large

terraces which are near the descending step are in hcp
sites whereas those near the ascending step are in fcc sites
(cf. Fig. 1e). The smaller terraces remain unreconstructed.
Our model also includes the arrangement of structure 1
and structure 2 on the surface [12]. The terrace widths
w1 and w2, as well as the proportion p of structure 2,
have been determined by statistic over STM images.
Thus, the model contains three parameters: the correlation
coefficient q of the ordering between the two structures
(q � 0 corresponds to completely segregated phases
and q � 1 corresponds to a random mixture between
the two structures), the width, and the position of the
discommensuration line. As shown in Figs. 1c and 1d, the
introduction of the discommensuration line accounts for
the strongly different spectra obtained in the anti-Bragg
condition, and the agreement between the experimental
data (open circle) and the calculated spectra (full line)
is excellent. Parameters deduced from the calculations
are q � 0.45, the discommensuration line width is six
atoms, the fcc (hcp) stacking domain on the large terrace
contains 7 (5) atomic rows (cf. Fig. 1e).

Although this reconstruction is unusual, it is consistent
with previous works on the Au�1, 1, 1� surface [11]: a dis-
commensuration line is systematically observed parallel
to the step edge at the bottom of �1, 0, 0� steps whereas
�1, 1, 1� steps are always crossed by discommensuration
lines. This was interpreted by a step energy minimiza-
tion. This effect is even more important in the case of the
Au�11, 9, 9� surface. Indeed, the descending step edges
of the larger terraces are transformed into �1, 1, 1� step
edges (cf. Fig. 1e) which is known to be energetically fa-
vorable. The particular behavior of the reconstruction is
thus strongly governed by step energetic arguments. It
should also be mentioned that the existence of such stack-
ing fault lines has been suggested on a Pt�1, 1, 1� vicinal
surface with �1, 0, 0� steps [13].

Since the period of the Au�11, 9, 9� surface is only 7 nm,
it is questionable whether its morphology can be inter-
preted using a phase separation argument. It is necessary to
conclude on this point before applying Marchenko’s model
to the mesoscopic order of gold vicinals, since the start-
ing point of this model is that the surface is unstable to-
wards faceting [8]. Since the microscopic structure of the
discommensuration line (cf. Fig. 1e) found on Au�11, 9, 9�
consists of a purely uniaxial compression in the direction
perpendicular to the step edges, we developed a one di-
mensional model to demonstrate the faceting properties of
this surface. Details of this calculation will be given else-
where. The stressed terrace energy per unit area E1 is
calculated as a function of the terrace width L using a
Frenkel-Kontorova (FK) model [14,15]. For simplicity,
we have assumed that hcp and fcc sites are equidistant
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and energetically equivalent. Furthermore, we consider the
asymptotic case of infinite spring strengths, whose validity
has been discussed in previous work [16]. In this case, the
only boundary condition is that the first atom of the FK
chain is fixed in a trough of the substrate potential (corre-
sponding to the first atom which is not a surface atom as
shown in the inset in Fig. 2). Since the fundamental FK pa-
rameter P0 [14] which defines the misfit between the sur-
face and the bulk atoms is not known for the Au�11, 9, 9�
reconstruction, we assume that the atomic surface density
should be similar to the Au�1, 1, 1� reconstructed surface
and thus we take P0 � 22. The graph of E1, shown in
Fig. 2, displays several minima which correspond to ter-
race widths locked by the reconstruction. For a vicinal
surface, the surface energy per unit area also includes the
step energy cost E2 � B�L and the repulsive elastic in-
teraction energy between steps, E3 � C�L3. These con-
tributions, where B and C have been deduced from the
experimental data of Wang et al. [17], are also shown in
Fig. 2. The curve of the total energy per unit area E clearly
displays an additional minimum associated with unrecon-
structed terraces, 1.4 nm wide. Finally, the total energy
curve is nonconvex and the tie bar construction applied
to a Au�11, 9, 9� surface predicts that a phase separation
will occur between one reconstructed phase composed of
6.5 nm wide terraces with a discommensuration line par-
allel to the step and a nonreconstructed phase with terraces
1.4 nm wide. This is indeed in good agreement with our
observations. This description gives all the physical ar-
guments for interpreting, as a phase separation, the mor-
phology of Au�1, 1, 1� vicinals with �1, 0, 0� steps, whose
misorientation lies between 3± and 10±.

Now, we want to recall the faceted morphology of the
Au�4, 5, 5� vicinal surface which presents the same misori-
entation angle as Au�11, 9, 9�, but with �1, 1, 1� steps (i.e.,
misoriented towards the �2̄, 1, 1� azimuth) [7]. On such

FIG. 2. Calculated energies per unit area of a Au�1, 1, 1�
vicinal surface with �1, 0, 0� steps: total energy E, stressed
terrace energy E1, step energy contribution E2, and elastic
interaction between steps E3. E1 is calculated using the FK
model schematically represented in the inset.
a surface, long range order distance of about 200 nm is
observed. A phase separation schematically represented
on Fig. 3a occurs between two vicinal phases: the largest
terraces are reconstructed whereas the smallest are not.
On the large terraces, the discommensuration lines, asso-
ciated with the usual Au�1, 1, 1�-22 3

p
3 reconstruction,

run perpendicular to and cross the steps, as schematically
shown in Fig. 3a. The comparison between Figs. 3a and
3b clearly shows that the atomic arrangement is drastically
different for both kinds of vicinal surfaces. In the follow-
ing we examine how the atomic structure interplays with
the mesoscopic order.

A theoretical approach to understand the periodicity of
faceted surfaces has been proposed by Marchenko [8].
When a phase separation occurs on a vicinal surface, the
discontinuities of the surface stress tensor at the edges
between two facets generate lines of local forces which
lead to long range bulk elastic relaxations. Marchenko
demonstrated that in order to minimize the elastic energy,
the surface morphology evolves towards the lowest pos-
sible period. However, there is a competition between
this elastic energy gain and the local edge energy cost,
C1. The order of magnitude of the period is given by
k � 2pa exp�1 1 C1�C2�, where a is an atomic cutoff
distance, and C2 evaluates the bulk elastic relaxations [8].

FIG. 3. Spontaneous periodic faceting of vicinals with �1, 1, 1�
steps (a) and vicinals with �1, 0, 0� steps (b). In each case
a schematic steps arrangement before (upper part) and after
(lower part) one phase has been inserted into the other is drawn.
The two terraces of the unreconstructed phase are in grey (i.e.,
they have an fcc stacking). The hcp atomic stacking fault
on the two terraces of the reconstructed phase is represented
by an hatched area. Arrows point out edges between vicinal
phases. Step structures are indicated by triangles for �1, 1, 1�
steps and full black squares for �1, 0, 0� steps.
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In the case of Au�1, 1, 1� vicinals, the order of magnitude
of C2 has been previously estimated to be a few tenths
of meV�Å, whatever the miscut azimuthal direction is
[7]. The precise knowledge of the surface atomic struc-
ture allows us to estimate the local energy cost C1 to insert
one phase into the other. This insertion is schematically
shown in Fig. 3 where step configurations are drawn before
(upper part) and after (lower part) one phase has been in-
serted into the other. By definition, C1 is the difference
between the surface energies of the two configurations ig-
noring the elastic contribution which is already taken into
account via the C2 parameter. The term of first order is the
difference in step energies. It can be seen in Fig. 3a that
inserting one phase into the other for Au�4, 5, 5� transforms
two �1, 1, 1� steps into a periodic succession of �1, 1, 1�
and �1, 0, 0� step portions. Because of the higher step en-
ergy for the �1, 0, 0� steps, this results in a local energy
cost C1. An estimation of this term using the �1, 1, 1� and
�1, 0, 0� step energies [17,18] as well as the proportion of
hcp stacking along the step gives a few meV�Å. Follow-
ing Marchenko’s model, it leads to a micronic period for
vicinal surfaces with �1, 1, 1� steps, not far from our obser-
vations of 200 nm. However, it is not expected to obtain a
quantitative agreement, taking into account the roughness
of our estimation together with the very high sensitivity
of the exponential function. More interesting is the com-
parison with the Au�11, 9, 9� surface. Indeed, comparing
steps in the upper and lower parts of Fig. 3b shows that no
difference in step energies appears, when one phase is in-
serted into the other. In this case, additional effects must be
invoked to evaluate C1. It has been recently proposed that
C1 could result from the modification of the terrace widths
in the vicinity of the frontier due to its asymmetric environ-
ment [19]. Following this work, we assumed a few percent
variation of the edge terraces so that the edge energy cost
can be evaluated from our Frenkel-Kontorova model. It is
found to be a few tenth of meV�Å. This value is probably
overestimated since the calculations of Liu et al. concern a
much more asymmetric case than ours. However, this gives
an upper limit for C1 which is at the most equal to C2.
Thus, Marchenko’s model predicts the smallest possible
period that can be realized with the two favored terrace
widths. This is indeed what we observe on the Au�11, 9, 9�
surface. Of course, the validity of the Marchenko’s model
has to be discussed in the case of such a small phase ex-
tent but it is known that the elastic theory provides correct
results until a few atomic distances. Therefore our results
strongly suggest that the difference in C1 between both
type of vicinals is responsible for their drastically differ-
ent mesoscopic faceted morphologies. Thus, Au�1, 1, 1�
vicinal surfaces provide a unique opportunity to point out
the crucial role played by the boundary energy cost in the
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self-organization phenomena. Surprisingly, although the
edge energy cost is not the driving force for the periodic
faceting, it is able to monitor the value of the period. This
is indeed of primordial interest for numerous applications
of self-organized systems.

As a conclusion, we have determined the precise atomic
structure of some Au�1, 1, 1� vicinal surfaces. We have
found completely different surface reconstructions depend-
ing on the azimuthal direction of miscut which lead to dras-
tic changes for the periodicity of the faceted Au�1, 1, 1�
vicinal surfaces. We have interpreted these results in the
framework of elastic theory and demonstrated the crucial
role of the boundary energy cost in the self-organization
phenomena. This is an illustration of how the mesoscopic
order can be governed by the microscopic arrangement. In
order to monitor the mesoscopic order, several ways can
be imagined to control the microscopic arrangement, such
as reconstruction, temperature, or adsorbates. Thus this
Letter opens the way to many studies and applications in
self-organization physics.
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