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Directional Anisotropy in the Cleavage Fracture of Silicon
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Total-energy pseudopotential calculations are used to study the cleavage anisotropy in silicon. It is
shown that cracks propagate easily on �111� and �110� planes provided crack propagation proceeds in
the �1̄10� direction. In contrast, if the crack is driven in a �001� direction on a �110� plane the bond
breaking process is discontinuous and associated with pronounced relaxations of the surrounding atoms,
which results in a large lattice trapping. The different lattice trapping for different crack propagation
directions can explain the experimentally observed cleavage anisotropy in silicon single crystals.

PACS numbers: 62.20.Mk, 71.15.Nc
The catastrophic failure of materials is ultimately deter-
mined by events on the atomic scale. This is particularly
clear in the case of brittle fracture, where the crack at its tip
must be atomically sharp and move by breaking individual
bonds between atoms. Such a brittle crack can therefore
be regarded as a probe for the atomic bonding.

Semiconductors and particularly silicon are materials
that may be suitable to test the perfectly brittle case
experimentally. Silicon can be produced as a virtually
dislocation-free single crystal and crack tips have been
observed in the transmission electron microscope to
propagate in the absence of dislocations [1]. Silicon has
been studied extensively for its fracture characteristics
[2–4]. In short, silicon is reported to have two principal
cleavage planes: �111� planes, usually the easy cleav-
age plane [5], and �110� planes [4], the planes of easy
cleavage in polar III-V semiconductors [6]. Different
crack propagation directions have been studied for both
crack planes. The �110� propagation direction was seen
to be the preferred propagation direction on both cleavage
planes [4,5]. On the �111� fracture surface an anisotropy
with respect to propagation direction manifests itself only
in faint markings along �110� directions. In contrast,
cleavage fracture on the �110� plane is very anisotropic
as shown schematically in Fig. 1. Propagation along the
�110� direction is easy and results in nearly perfectly
flat fracture surfaces, while propagation along the �111�
direction is difficult to achieve and never gives flat fracture
surfaces [5]. Attempts to achieve propagation in the �001�
direction, perpendicular to the preferred direction have
not been successful [7,8] because the crack deflects onto
�111� or �112� planes [8], as shown in Fig. 2 [8].

An anisotropy with respect to crack propagation di-
rection is difficult to understand theoretically. Following
Griffith [9] one may regard the static brittle crack as a re-
versible thermodynamic system for which one seeks equi-
librium. In equilibrium, the mechanical energy release
upon crack advance G must be in balance with the en-
ergy required to create the two new surfaces 2g. The Grif-
fith criterion, G � 2g, is not really a fracture criterion
but only a necessary condition for fracture. Nevertheless,
0031-9007�00�84(23)�5347(4)$15.00
the Griffith criterion leads to two important conclusions:
(1) crystal lattice planes with low surface energies are en-
ergetically favored as cleavage planes and (2) independent
of the propagation direction, a given cleavage plane will
have a single unique value of G . A perfectly brittle crack
in a crystal is therefore expected to choose a cleavage plane
with low surface energy and to propagate on this plane with
equal ease in all directions.

From an atomistic point of view the situation is
somewhat different. The first atomistic studies of fracture
showed that the discreteness of the lattice manifests itself in
the so-called lattice trapping effect [10,11]. Lattice trap-
ping causes the crack to remain stable and not to advance
until loads somewhat larger than the Griffith load are
reached. It has been shown that the magnitude of the
trapping range strongly changes with the bonding charac-
teristics [11–13]. Lattice trapping may also depend on the
direction in which the crack tip bonds are broken and may
therefore be different for crack propagation along different
crystallographic directions on one cleavage plane [14,15].

Atomistic modeling of cracks is a rather complicated
problem because both the long-range elastic interactions
and the short-range chemical interactions are needed for
a correct description of the problem. This either requires
a large atomistic model or one has to embed the atom-
istic region into a flexible surrounding [14,16]. Therefore,
crack propagation has previously been studied mainly by

FIG. 1. Schematic drawing of the experimentally observed
crack propagation modes along different crystallographic
directions on the (110) plane.
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FIG. 2. Side view (lateral width is 25 mm) of a �1̄10� wafer
broken in uniaxial tension along a �110� direction. The crack
propagates on planes inclined by 35± and more with respect
to the macroscopic �110� crack plane. Figure courtesy of
T. Cramer [8].

simple empirical interaction models. A recent study on
silicon [17] clearly demonstrated the limits of these empiri-
cal descriptions for the application in fracture simulations.
To obtain crack propagation it was necessary to manipulate
the three-body term of the Stillinger-Weber potential [18],
which then of course introduced unwanted changes to the
bulk properties. We have experienced similar problems in
our attempt to simulate crack propagation in silicon with
the Tersoff potential [19]. Despite the fact that this poten-
tial is able to describe the surfaces quite nicely [19], our
simulations showed unphysical structural transitions at the
crack tip. The purpose of this paper is to atomistically ana-
lyze the stability of brittle cracks in silicon single crystals.
The analysis is based on a full quantum mechanical study
of the bond breaking process, where particular attention
is paid to the anisotropy with respect to the crack propa-
gation direction and to effects of the system size. It will
be shown that some of the important atomistic effects can
even be seen in very small models.

The energies and atomic forces are calculated within
density functional theory in the local density approxima-
tion in its plane wave pseudopotential formulation [20].
An optimized nonlocal pseudopotential [21] is used for
silicon. The optimization makes the pseudopotential
rapidly convergent with the cutoff energy of the plane
wave expansion [22]. A bare Coulomb potential is used
for the hydrogen atoms which saturate the dangling bonds
at the outer surface of the atomistic model.

Cracks on the �110� plane with �001� and �11̄0� crack
fronts (shown in Fig. 3) and a �111� crack with a �01̄1�
crack front are considered. Periodic boundary conditions
are applied along the crack front direction to simulate plane
strain conditions. The elastic field of the crack is applied
to the atomistic region by means of displacement bound-
ary conditions. The outermost two layers of silicon atoms
(see Fig. 3) are held fixed at the positions given by the
anisotropic linear elastic solution for a straight crack un-
der opening mode loading [23], while the other atoms are
relaxed using a conjugate gradient method.

The magnitude of the loading is characterized by the
stress intensity factor K . The energy release rate can di-
rectly be obtained from the square of the stress intensity
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FIG. 3. Relaxed atomic configuration for the �110� �1̄10	
(above) and the �100� �001	 (below) crack orientations at a load
of KI � 1.20KG

I . The atoms outside the dashed line are kept
fixed at the positions given by the elastic solution during the
relaxation process.

factor with a constant conversion factor [23], which is
given in Table I together with the system sizes, the surface
energies, and other relevant information on the different
crack systems.

The calculations are started at a stress intensity KG

which fulfills the Griffith criterion. All crack systems are
stable at this load, which means that the crack tip does not
advance or recede during relaxation. The relaxed struc-
tures are then taken as the starting point for further loading
or unloading by proportional scaling of all displacements
and subsequent relaxation. Loading or unloading is per-
formed in increments of 5% of the Griffith load.

The fracture toughness is determined from the critical
load K1 at which the crack tip bond breaks and the crack
advances upon increasing the load. Similarly a critical load
for crack closure K2 can be determined upon decreasing
the load. The lattice trapping regime, where the crack
remains at one particular position in the lattice, is given
by DK � K1�K2 2 1.

The breaking of the crack tip bond can be determined
by monitoring the bond distances across the crack plane.
Figure 4 shows the bond distances of the bonds close to
the crack tip of the two �110� crack systems as a function
of the applied load. Two different system sizes are shown
on the same plot. The labeling of the bonds corresponds
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TABLE I. Dimensions and crystallography of the crack systems considered. The dimensions
are given in units of the bulk lattice parameter of the 8-atom cubic unit cell of silicon. The
surface energies (g) are calculated for the relaxed buckled (110) surface and the 2 3 1 Pandey
reconstruction of the (111) surface. The values for K2�G are calculated from the experimental
elastic constants [24].

Crack orient No. of atoms g K2�G
(plane) [front] Dimensions Si 1 H J�m2 GPa

�110� �11̄0	 7
2 3

5
2

p
2 3

p
2

2 68 1 34 1.73 57.8

Large 8
2 3

6
2

p
2 3

p
2

2 96 1 42 · · · · · ·

�110� �001	 2
p

2 3 2
p

2 3 1 64 1 32 1.73 52.1

Large 3
p

2 3 3
p

2 3 1 144 1 48 · · · · · ·
�111� �01̄1	 3

2

p
6 3 2

p
3 3

p
2 70 1 26 1.44 56.2
to Fig. 3. It is apparent that bond A is broken and bond B
is intact at the lowest displayed loads.

Upon loading the �110� �11̄0	 crack system, the bond
length of bond B increases gradually up to a load below
K1 � 1.35KG , at which the bond length increases signifi-
cantly. This sudden increase in bond length from about
3 Å to about 4 Å is a clear signature of the bond breaking
process. The bond breaking occurs at the same load for
both system sizes. However, the jump in bond length and
the corresponding structural relaxations of the surrounding
atoms are significantly more pronounced for the larger
system. Similarly bond A is healing upon unloading at
a load of K2 � 0.85KG (not shown in Fig. 4) so that
the �110� �11̄0	 crack system is characterized by a lattice
trapping range of DK � 0.6.

Neither the (110) [001] crack system (shown in Fig. 4)
nor the �111� �011̄	 crack system show such an abrupt bond
breaking process. The crack tip bonds appear to con-
tinuously lengthen from 3 to 4 Å upon loading. Simi-
larly, the bonds close continuously upon unloading. This
makes it difficult to precisely determine the upper and
lower critical loads but has no effect on the magnitude
of the trapping range. If a bond length of 3.3 Å is taken
as the critical distance, the (110) [001] crack system gives
K1 � 1.25KG and K2 � 0.95KG . The lattice trapping
range is DK � 0.3. This trapping range decreased by 0.05
upon increase of the system size from the smaller to the
larger system. Furthermore, it is interesting to note that
the crack propagates further and even breaks bond C upon
increasing the load to 1.4KG in the large system.

The �111� �011̄	 crack system gives the same lattice trap-
ping range and critical loads (K6 � 0.95 2 1.25KG) as
the (110) [001] crack system with similar difficulties in the
definition of precise upper and lower critical loads.

The calculations for the �111 � �011̄	 crack system can
be compared to previous studies [25], which used a non-
self-consistent ab initio tight-binding scheme and an ex-
trapolation method to determine the lattice trapping range.
A lattice trapping range of DK � 0.3 is reported for the
largest model, which is in good agreement with our result
despite the very different methods used.

Two distinct types of bond breaking processes are
observed here: A continuous process without pronounced
structural relaxations and a clearly discontinuous abrupt
bond breaking event. The continuous process mimics what
one would expect from continuum theory and therefore
results only in a relatively narrow lattice trapping range.
The magnitude of the trapping range decreases upon
increasing the system size. Consequently, the trapping in
the continuous process may partly be regarded as an effect
of the limited system size. One may then conjecture that
the trapping range could decrease further upon increasing
the system size to macroscopic dimensions. In either
case, the low lattice trapping leads to easy propagation
of cracks in directions in which a continuous bond
breaking occurs. In contrast, the discontinuous process is
clearly connected to structural rearrangements at the crack
tip. Comparing the different system sizes, it is apparent
that the lattice trapping is mainly a result of the relaxations
of the 6 or 8 atoms immediately surrounding the crack
tip. The magnitude of the trapping range therefore does
not change with system size even for very small systems.
Atomic rearrangements and relaxations in the immediate
neighborhood of the crack tip can therefore be made
responsible for the large trapping range.

A small lattice trapping range should lead to low frac-
ture toughness and easy propagation of cracks in the �110�
direction in which a continuous bond breaking occurs. In
contrast, the discontinuous process which is connected to
large lattice trapping should result in a higher fracture
toughness. Consequently, the calculations give a very pro-
nounced anisotropy with respect to crack propagation in
different directions on the silicon (110) plane.

Comparing the calculated propagation anisotropy for
�110� cleavage to fracture experiments [5,7,8] it seems as if
the agreement is only qualitative. Propagation in the “dif-
ficult” �001� direction is not seen in experiments, which
instead show a deviation of the crack from the original
plane onto inclined planes, while crack propagation con-
tinues on the �110� plane in the simulations. To assess
the possibility for the crack to deviate from the original
(110) plane, one can compare the opening stress inten-
sity on the (111) plane inclined by Q � 35.3± with re-
spect to the �110� �1̄10	 crack with the fracture toughness
of the �111� �1̄10	 crack system. The inclination of course
decreases the opening stress intensity compared to the
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FIG. 4. Comparison of the bond distances (in Å) as a function
of the stress intensity factor for the medium (dashed lines and
empty symbols) and large (continuous lines and filled symbols)
systems with the �110� �1̄10	 (top) and the (110) [001] (center)
orientations. Bottom: Bond distance for bond B as a function
of the stress intensity for the two crack orientations. The two
different types of bond breaking processes can be clearly seen.
Notice that the additional jump at 1.4KG for the (110) [001]
crack is due to the breaking of bond C.

opening stress intensity on the original (110) plane. How-
ever, the large lattice trapping in the “difficult” �110� �1̄10	
crack system just compensates this decrease. At the up-
per lattice trapping limit of the �110� �1̄10	 crack system
the opening stress intensity on the inclined (111) plane is
KQQ�35.3±� � 1.03K�111� �1̄10	. The finding that the crack
did not deviate, although in principle it could, most cer-
tainly has to be attributed to the small size of the system,
which stabilizes the crack on the original plane to which
the boundary conditions apply.
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The inclined crack of course also experiences a mixed
mode (opening and shear) loading, which actually exerts
a higher driving force on the crack than just the opening
component. However, the influence of the mode mixity on
the lattice trapping is completely unknown until today and
must be deferred to future investigations, which probably
require larger system sizes as well.

One of the important side aspects of the present cal-
culations is that the ab initio calculations presented here
provide the basis for the development of future improved
empirical potentials for silicon. The results of the crack tip
calculations probe the atomic bonding during the breaking
process in a range of distances which is hardly accessible
to other calculations and which is of crucial importance if
an improved potential is to be used in mechanically dis-
torted environments.
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