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Lévy Distribution of Single Molecule Line Shape Cumulants in Glasses
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We investigate the distribution of single molecule line shape cumulants, k1, k2, . . . , in low temperature
glasses based on the sudden jump, standard tunneling model. We find that the cumulants are described
by Lévy stable laws, thus the generalized central limit theorem is applicable for this problem.

PACS numbers: 61.43.Fs, 05.40.Fb, 78.66.Jg
Recent experimental advances [1] have made it possible
to measure the spectral line shape of a single molecule
(SM) embedded in a condensed phase. Because each mole-
cule is in a unique static and dynamic environment, the
line shapes of chemically identical SMs vary from mole-
cule to molecule [2]. In this way, the dynamic properties
of the host are encoded in the distribution of single mole-
cule spectral line shapes [1–8]. We examine the statistical
properties of the line shapes and show how these are related
to the underlying microscopic dynamical events occurring
in the condensed phase.

We use the Geva-Skinner [5] model for the SM line
shape in a low temperature glass based on the sudden
jump picture of Anderson and Kubo [9,10]. In this model,
a random distribution of low-density (and noninteracting)
dynamical defects [e.g., spins or two level systems (TLS)]
interacts with the molecule via long-range interaction
(e.g., dipolar). We show that Lévy statistics fully char-
acterize the properties of the SM spectral line in both
the fast and slow modulation limits, while far from these
limits Lévy statistics describe the mean and variance of
the line shape. We then compare our analytical results,
derived in the slow modulation limit, with results obtained
from numerical simulation. The good agreement indicates
that the slow modulation limit is correct for the parameter
set relevant to experiment.

Lévy stable distributions serve as a natural generaliza-
tion of the normal Gaussian distribution. Lévy stable laws
are used when analyzing sums of the type

P
xi , with �xi�

being independent identically distributed random variables
characterized by a diverging variance. In this case the ordi-
nary Gaussian central limit theorem must be replaced with
the generalized central limit theorem. With this generaliza-
tion, Lévy stable probability densities, Lg,h�x�, replace the
Gaussian of the standard central limit theorem. Lévy stable
characteristic functions, L̂g,h�k�, are of the form [11]

ln�L̂g,h�k�� � imk 2 zgjkj
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for 0 , g # 2 (for the case h fi 0, g � 1, see [11]).
Four parameters are needed for a full description of a stable
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law. The constant g is called the characteristic exponent,
the parameter m is a location parameter which is unim-
portant in the present case, zg . 0 is a scale parameter,
and 21 # h # 1 is the index of symmetry. When h �
0 �h � 61� the stable density Lg,h�x� is symmetrical
(one sided). Lévy statistics is known to describe several
long-range interaction systems in diverse fields such as as-
tronomy [11], turbulence, and spin glass [12]. Stoneham’s
theory [13] of inhomogeneous line broadening in defected
crystal is based on long-range forces and parts of it can be
interpreted in terms of Lévy stable laws.

An important issue is the slow and fast modulation limits
[6,10]. Briefly, the fast (slow) modulation limit is valid if
important contributions to the line shape are from TLSs
which satisfy n ø K �n ¿ K�, where n is the frequency
shift of the SM due to SM-TLS interaction and K is the
transition rate of the flipping TLS (see details below). In
the fast modulation limit, all (or most) lines are Lorentzian
with a width that varies from one molecule to the other.
For this case, the (Lévy) distribution of linewidths fully
characterizes the statistical properties of the lines. The
second, more complicated, case corresponds to the slow
modulation limit. Then the SM line is typically composed
of several peaks (splitting) and is not described well by a
Lorentzian. If a SM shows splitting, one can investigate
the validity of the standard tunneling model of glass [14]
in a direct way, since the splitting of a line is directly
associated with SM-TLS interaction [7]. As mentioned,
we demonstrate the existence of a slow modulation limit
in SM-glass system.

Following [5] we assume a SM coupled to nonidentical
independent TLSs at distances r in dimension d. Each TLS
is characterized by its asymmetry variable A and tunneling
element J . The energy of the TLS is E �

p
A2 1 J2. The

TLSs are coupled to phonons or other thermal excitations
such that the state of the TLS changes with time. The state
of the nth TLS is described by an occupation parameter,
jn�t�, that is equal to 0 or 1 if the TLS is in its ground
or excited state, respectively. The probability for finding
the TLS in its upper j � 1 state, p, is given by the stan-
dard Boltzmann form p � 1��1 1 exp�E��kbT ���. The
transitions between the ground and excited states are de-
scribed by the up and down transition rates Ku, Kd , which
© 2000 The American Physical Society 5339
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are related to each other by the standard detailed balance
condition.

The excitation of the nth TLS shifts the SM’s transition
frequency by nn. Thus, the SM’s transition frequency is

v�t� � v0 1

NactX
n�1

jn�t�nn , (2)

where Nact is the number of active TLSs in the system (see
details below) and v0 is the bare transition frequency that
differs from one molecule to the other depending on the
local static disorder. We consider a wide class of frequency
perturbations

n � 2paC�V�f�A, J�
1
rd

, (3)

where a is a coupling constant with units �Hz nmd�, C�V�
is a dimensionless function of order unity, V is a vector
of angles determined by the orientations of the TLS and
molecule (in some simple cases V depends on polar an-
gles only), f�A, J� $ 0 is a dimensionless function of the
internal degrees of freedom of the fluctuating TLS, and d

is the interaction exponent. The line shape of the SM is
given by the complex Laplace transform of the relaxation
function

ISM�v� �
1
p
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provided that the natural lifetime of the SM excited state is
long. The relaxation function of a single TLS was evalu-
ated [10] based on methods developed in [9]

F�t� � e2�J1ipn�t
∑

cosh�Vt� 1
J

V
sinh�Vt�

∏
(5)

with V � �K2�4 2 n2�4 2 i�p 2 1�2�nK�1�2, J �
K
2 2

i�p 2
1
2 �n, and K � Ku 1 Kd . For a bath of TLSs the

line shape, Eq. (4), is a formidable function of the random
TLS parameters �r , V, A, J� as well as the system parame-
ters �a, T , etc.�. In the fast modulation limit K ¿ jnj,
one finds a simpler behavior: all lines are Lorentzian with
half-width

G̃ �
NactX
n

pn�1 2 pn�n2
n�Kn , (6)

which varies from one molecule to the other. Equation (6)
shows the well known phenomena of motional narrowing.
In the slow modulation limit K ø jnj one finds F�t� �
1 2 p 1 pe2int implying that the line shape of a mole-
cule coupled to a single TLS is composed of two delta
peaks, the line shape of a molecule coupled to two TLSs
is composed of four delta peaks, etc. (splitting).

The spectral line is characterized by its cumulants kj

�j � 1, 2, . . .� that vary from one molecule to the other,
and we investigate the cumulant probability density P�kj�.
We have derived the cumulants of the SM line shape, and
the first four cumulants are presented in Table I [15]. We
observe that cumulants of order j # 2 are real while gen-
erally cumulants of order j . 2 are complex, implying
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TABLE I. Cumulants kj of the SM line shape.
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that the moments of the line shape diverge when j . 2.
The summation,

P
n, in Table I is over the active TLSs,

namely, those TLSs which flip on the time scale of obser-
vation t (i.e., Kn . 1�t). We consider the slow modu-
lation limit, soon to be justified, which means that we
consider the case Kn ø nn. To investigate this limit we
set Kn � 0 in Table I; then all the cumulants are real and
are rewritten as kj �

P
n Hjnn

j
n, where Hj are functions

of p only and H1 � p, H2 � p�1 2 p�, H3 � p�1 2

p� �2p 2 1�, etc. Note that for k1 and k2 no approxi-
mation is made.

Let �?	rVAJ denote an averaging over the random TLS
parameters. The characteristic function of the jth cumulant
can be written in a form

�exp�ikkj�	rVAJ

� exp

∑
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where reff is the density of the active TLS and Bj �
�2pa�jCj�V�fj�A, J�Hj . To derive Eq. (7) we have used
the assumption of independent TLSs uniformly distributed
in the system. For odd j cumulants we find

�exp�ikkj�	rVAJ � L̂g,0�k� , (8)

with characteristic exponent g � d��dj� and the scale
parameter

zg � reff�2pa�d�d� fd�d�A, J� jHjj
g	AJcg

3
Z

dV jCj�V�jg (9)

with cg � cos�gp�2�G�1 2 g�, c1 � p�2. Equation (8)
shows that odd cumulants are described by symmetrical
Lévy stable density, i.e., P�kj� � Lg,0�kj�. Two condi-
tions must be satisfied for such a behavior, 0 , g , 2
and

R
dV sin�Cj�V�� � 0. The latter condition gives the

symmetry condition, h � 0, which means that negative
and positive contributions to kj are equally probable.

For even cumulants and 0 , g , 1 we find

�exp�ikkj�	rVAJ � L̂g,h�k� (10)

with a scale parameter Eq. (9) and with Lévy index of
symmetry

h �
� fjg�A, J� jHjj

g Hj

jHj j
	AJ

� fjg�A, J� jHj jg	AJ
. (11)
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Equation (10) implies that even cumulants are distributed
according to P�kj� � Lg,h�kj�. We note that the asym-
metrical Lévy functions, with h fi 61, 0, only rarely find
their applications in the literature. The characteristic expo-
nent g depends only on the general features of the model
(namely, on d and d). In contrast the Lévy index of sym-
metry h depends on the details of the model and on sys-
tem parameters �T , etc.�. For j � 2 we have Hj � jHj j
and then h � 1 so the Lévy density is one sided, as is ex-
pected since k2 . 0.

As mentioned, in the fast modulation limit, the random
linewidth in Eq. (6) characterizes the statistical properties
of the spectral lines. Using the approach in Eqs. (7)–(9)
one can show that P�G̃� � Ld��2d�,1�G̃� with the scale pa-
rameter zd��2d� given by Eq. (9) with j � 2 and H2 �
p�1 2 p��K .

In what follows we exhibit our results and compare to
simulations based on the standard tunneling model of low
temperature glass [14]. We use system parameters which
model terrylene in polystryrene [5]. The SM-TLS inter-
action is dipolar, hence d � 3, and we consider spatial
dimension d � 3. The distribution of the asymmetry pa-
rameter and tunneling element is P�A�P�J� � N21J21 for
2.8 3 1027 K , J , 18 K and 0 , A , 17 K, N de-
noting a normalization constant. We use f�A, J� � A�E
and define a TLS to be active if K . 1�t; t � 120 sec
is the time of experimental observation. In this way the
averaging �· · ·	AJ becomes t independent. The rate of
the TLS is given by K � cJ2E coth�bEn�2� and c �
3.9 3 108 K23 Hz is the TLS phonon coupling constant.
Additional system parameters are the coupling constant
a � 3.75 3 1011 nm3 Hz and the TLS density 1.15 3

1022 nm23. According to Eqs. (8)–(11), only the scale
parameter zg depends on the orientation of the TLS and
SM, through C�V�. It is therefore reasonable to assume
simple forms for C�V�. We consider two examples, model
1 (M1) for which C�V� is replaced with a two state vari-
able (i.e., a spin model) C � 1 or C � 21 with equal
probabilities of occurrence and model 2 (M2) C�V� �
cos�u�, with u, the standard polar coordinate, distributed
uniformly. With these definitions we calculate the sym-
metry index h and the scaling parameter zg and compare
between the theory and numerical simulation.

We consider the first two cumulants k1 and k2 (i.e.,
the line shape mean and variance). Since d � d we find
P�k1� � L1,0�k1�, which is the Lorentzian density, and
P�k2� � L1�2,1�k2�, which is Smirnov’s density. We have
considered two temperatures for the two models M1 and
M2. As shown in Figs. 1 and 2, a scaling behavior is ob-
served and all data collapse on the Lévy densities L1,0�k1�
and L1�2,1�k2�, respectively. In Figs. 1 and 2 we have
rejected TLSs within a sphere of radius rmin � 1 nm,
demonstrating that our results are not sensitive to a short
cutoff. Also shown in the inset in Fig. 2 is P�Re�k3��
which is distributed according to L1�3,0�Re�k3�� and a scale
parameter z1�3 given in Eq. (9). The Lévy behavior of
FIG. 1. Scaled probability density of first cumulant P�k1�z1
versus k1�z1. Symbols are the simulation results obtained from
4000 molecules for different cases indicated in the figure. The
theory, plotted as a solid curve, predicts a Lorentzian density
P�k1� � L1,0�k1� with a scaling parameter z1 which varies from
one set of data to the other.

k1, k2 and Re�k3� holds generally and is not limited to the
slow modulation limit since these random variables do not
depend explicitly on the rates K .

Consider the distribution of Re�k4�, which in the
slow modulation limit is distributed according to
L1�4,h�Re�k4��, Eq. (10). The question remains if such a
slow modulation limit is valid for the standard tunneling
model parameters we are considering. The slow modula-
tion limit is expected to work when K ø jnj. For large
enough r this inequality will fail; however, depending on
system parameters, we expect that contributions from TLS
situated far from the SM are negligible. We also note that

FIG. 2. Same as Fig. 1 for the second cumulant. We show
P�k2�z2

1�2 versus k2�z2
1�2. The solid curve is Smirnov’s density

L1�2,1�k2�. In the inset we show the same as Fig. 1 for Re�k3�;
the solid curve is Lévy density L1�3,0�Re�k1�3��.
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FIG. 3. Same as Fig. 1 for Re�k4� and for temperature T �
1.7 K. The symbols are the simulation results obtained for four
different cases as indicated in the figure and for 12 000 mole-
cules. The solid curve is L1�4,h�Re�k4�� with an index of asym-
metry h � 0.6104. In the inset we show the power law tail of
the scaled probability density on a log-log plot.

according to the standard tunneling model the rates K are
distributed over a broad range, albeit with finite cutoffs
that ensure that the averaged rate is finite. To check if the
slow modulation limit is compatible with the standard tun-
neling model approach, we compare our slow modulation
results with those obtained by simulation in Fig. 3. We
also show simulation results in which all rates are set to
zero (K � 0). For model M1, we find that the deviation
between simulation and theory is small so the assumption
of slow modulation limit is justified. This implies that
it is the static (not dynamic) features of the TLSs that
are encoded in the distribution of line shapes. For model
M2, we see slightly larger deviations between the theory
and numerical results, due to the angular dependence of
model M2, C�V� � cos�u�, which reduces the typical
frequency shift jnj compared to model M1. We conclude
that the present theory can be used as a criterion for the
validity of the slow modulation limit.

Depending on system parameters, Lévy statistics may
become sensitive to the finite cutoff rmin. Physically, the
cutoff can be important since the power law interaction is
not supposed to work well for short distances [6]. Our
results were derived for rmin � 0, while for small though
finite rmin one can find intermittency behavior, i.e., the ra-
tio �k2

2	��k2	2 (as well as similar dimensionless ratios) is
5342
very large [16]. When rmin is large one finds a Gaussian
behavior. Generally high order cumulants are more sensi-
tive to finite cutoff and for results in Fig. 3 rmin � 0 was
chosen to see the proper decay laws in the wing.

Besides SM in low temperature glass, our results
[Eqs. (8)–(11)] might be applicable to other model
systems, for example, SM (or single spin) interacting with
independent identical slow TLSs randomly distributed
in space. Only the scaling zg and h are sensitive to the
details of the model while the Lévy behavior is universal.
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