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Theory of Chiral Imprinting
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We present a continuum model for a nematic elastomer network formed in a chiral environment,
for instance, in the presence of a chiral solvent. When this environment is removed, the network can
retain some memory of its chiral genesis. We predict the residual chiral order for a number of possible
scenarios, and examine the robustness (stability) of the imprinted chirality. We show that a twist-untwist
transition can take place, which determines whether the imprinting has been successful. A transition is
via a coarsening of the helical director pattern and a lengthening of its pitch. Finally, the effect due to a
subsequent swelling by an achiral solvent, or by a solvent of differing chirality, is considered.

PACS numbers: 61.30.–v, 61.41.+e, 78.20.Ek
Nematic elastomers combine the properties of a liquid
crystal and those of a conventional rubber. This synergy
gives rise to novel material behavior, which in turn has
stimulated much research in past years [1]. From a gen-
eral symmetry argument, de Gennes [2] first suggested that
chirality may be introduced to such an elastomer by simply
forming it in a chiral solvent. The originally achiral liquid
crystalline polymer would then remember the induced chi-
rality after cross-linking, even when the solvent is removed
or replaced with an achiral one. This is the case of chiral
imprinting, which potentially can open up an entirely new
way of producing materials of specified optical properties.
Chiral imprinting, in principle, is akin to cross-linking a
nematic polymer under an external magnetic or mechani-
cal field [1,3] where the monodomain state is also per-
manently imprinted. Experimentally chiral imprinting was
studied long ago [4] as a function of solvent exchange. It
has been exploited by Yang et al., who used a weak gel to
stabilize cholesteric textures or director uniformity in re-
flective display devices [5]. More recently imprinting has
been studied [6] as a function of both solvent removal and
temperature.

Another measure of imprinting occurs in intrinsically
cholesteric networks. On temperature changes that would
cause a substantial pitch variation in a non-cross-linked
cholesteric polymer melt, the corresponding network suf-
fers essentially no variation—see, for example, Fig. 8 of
Ref. [7], where also many other references to cholesteric
elastomers are given. In this paper, we analyze chiral
imprinting, and predict the retained chiral properties of
the elastomer when the initial chiral environment of cross-
linking is altered. Gradients of director variation are
modeled within continuum Frank nematic elasticity. The
nematic elastomer penalty for rotation of the director
relative to the solid matrix is described in a fully nonlinear,
rubber-elastic manner since rotation can be large.

A nematic liquid crystal has a mobile director n, the
gradient of which incurs a Frank energy [8]. For the free
energy density of a cholesteric liquid crystal, the twist term
is modified by a pitch wave number, q0:
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1 K3�n 3 === 3 n�2� ,

where K1,2,3, respectively, measure the energy penalty for
splay, twist, and bend, the three possible modes of the
nematic director distortion. Sometimes fc is equivalently
written as the nematic Frank energy plus a term linear in
twist �q0�n ? === 3 n�. In a pure twisting, cholesteric con-
formation of the director, we can drop the terms involving
K1,3. These other contributions arise if the director moves
away from the helical plane and tilts toward the pitch axis.
The Frank energy can be viewed as a continuum descrip-
tion with higher order spatial derivatives truncated, and it
suffices for cases where the director varies slowly over a
nematic coherence length (�10 nm).

When liquid crystalline polymers are cross-linked into a
rubber network, additional constraints on n arise in the
form of director anchoring to the network. Anchoring
manifests itself with an extra energy cost [9] for a uniform
director rotation v relative to a local rotation of the elastic
matrix V. The energy density is 1

2D1��V 2 v� 3 n�2.
A second term couples the relative director-matrix rota-
tion to the shearing part of the elastic strain, l, that is,
D2n ? l ? ��V 2 v� 3 n�. For such strains to rotate the
director in a cholesteric, they would have to vary along
the helical axis. Elastic compatibility then introduces pro-
hibitively expensive secondary shears. Another alternative
is an x, y-dependent l and thus an accompanying director
modulation, but this appears unsupported by experiment
[6]. We accordingly ignore l terms.

Consider an initially regular cholesteric helix along the
z axis, Fig. 1. u is the azimuthal angle the local director
makes within the x-y plane and is initially

u0�z� � q0z , (1)

where q0 is the chiral pitch wave number. One can gener-
alize the D1 term to the large angle limit by considering a
molecular nematic rubber elastic model [1]. It is no longer
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1
2D1�u 2 u0�2 but 1

2D1 sin2�u 2 q0z� which has the
correct locally nematic symmetry of n � 2n. The energy
for an elastomer formed under a cholesteric solvent which
is subsequently replaced with an achiral one is then

F �
Z

dz
1
2 �K2u0 2 1 D1 sin2�u 2 q0z�� , (2)

where the prime indicates d�dz. The first term in F wishes
to remove the twist in n since now that the chiral impera-
tive of the solvent is removed the usual Frank twist penalty
is fully incurred. However, the second term insists that n is
anchored to a helix thanks to the cross-links being formed
under cholesteric conditions. The initial network polymers
are taken to be achiral; thus q0 is only induced and can be
tuned with the choice of the chiral solvent we subject our
elastomer to at formation. If achiral solvent is used when
cross-linking, q0 could simply be zero, and we retrieve the
description of more conventional nematic elastomers [1].

The two limits of the energy density are (i) the per-
fectly twisted cholesteric state f �

1
2K2q2

0 where the cur-
rent pitch wave vector is unchanged from q0, and (ii) the
untwisted state f �

1
4D1, the additional factor of 1

2 arising
from the averaging of sin2 over one period. Thus, crudely,
we expect the director to be twisted if

K2q2
0 , D1�2 (3)

and untwisted otherwise, this balance being tuneable since
K2, D1, and q2

0 vary relatively to each other with tempera-
ture, degree of cross-linking and swelling, and the pres-
ence of additional chiral agents. Equation (3) anticipates
the physics of our detailed results: highly twisted states
(q0 large) or systems with a large twist constant K2 will
pay a very high Frank penalty on loss of spontaneous twist
arising from the loss of the chiral solvent. A large com-
bination K2q2

0 will overcome the anchoring D1 and the
elastomer will untwist— imprinting will be lost. Weakly
twisted elastomers with weak twist constants will not over-
come director anchoring and imprinting will remain. We
now analyze Eq. (2) for details of the phase behavior.

To simplify matters, we begin with the following sub-
stitutions:

f � q0z 2 u 1 p�2; u � z�j;

j �
q

K2�D1; a � jq0 .

FIG. 1. A cholesteric director configuration.
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The angle f describes the variation away from (or modu-
lation of) the original helical pattern; that is, we are now
in a rotating frame of reference. Lengths are reduced by
the nematic rubber penetration depth j, the natural length
scale in the problem. The parameter a is a nondimen-
sional measure of the nematic length relative to the chiral
pitch, and the condition (3) is equivalent to a � 1�

p
2.

Following the remarks below Eq. (3), we expect imprint-
ing to be lost at large a and retained at small a. Dropping
a constant arising from the variable change u ! f, the
reduced energy (per unit cross-section area perpendicular
to the pitch axis) is

F̃ �
2F

D1j
�

Z
du�� �f 2 a�2 2 sin2f� , (4)

where � � signifies d�du. If we make the analogy to La-
grangian dynamics, the integrand is the Lagrangian density
(L � T 2 V ) of a particle in a potential given by sin2f.
Equations (2) and (4) appear, for instance, in the classical
problems of incommensurate phases [10]. They also re-
semble the problem of electric or magnetic fields applied
perpendicularly to the helix of a liquid cholesteric, solved
by de Gennes and Meyer [11]. In reduced terms, the sin2f

is like the field competing with the natural chirality a. In
terms of the original problem, Eq. (2), it is as if a naturally
untwisted nematic has a spatially chiral electric field “D1”
applied to it in an attempt to induce a twist.

The first integral of the Euler-Lagrange equation corre-
sponding to Eq. (4), the elliptic equation or often called in
the literature the sine-Gordon equation, leads to

�f2 1 sin2f � c2, (5)

where c2 is the integration constant, which has the physi-
cal interpretation of total energy. The analogy is helpful,
and before we examine the details we already foresee two
scenarios: If c2 , 1, the particle does not have sufficient
energy to overcome the barriers in sin2f potential and is
therefore localized, i.e., 2p�2 , f , p�2. This corre-
sponds to the case where cholesteric pitch is largely main-
tained, with f�u� only introducing small modulations to
the director orientation. If c2 . 1, our particle can climb
out of the potential valleys and travel freely; this corre-
sponds to the case of winding or unwinding the cholesteric
twists in director orientation. Below, we determine c in
terms of a.

The localized limit, c2 , 1.—Our particle oscillates be-
tween two values of fm � 6 arcsinc. We accordingly in-
troduce a new variable b in the interval b [ �2p

2 , p

2 �, so
that sinf � c sinb. Rewriting the derivative �f in terms of
�b and returning it to Eq. (5) reduces this equation to one

of the standard elliptic form, �b �
q

1 2 c2 sin2b. The
period of the oscillatory motion is found to be

T1 � 2
Z p�2

0

db

�b
� 2K�c� . (6)
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Here K �c�, and later E�c�, are the complete elliptic inte-
grals of the first and second kinds, respectively. The period
T1 gives, in units of the characteristic length scale j, the
spatial repeat distance of our f modulation of the original
cholesteric angle q0z. The reduced energy of a period can
be obtained from Eq. (4) as

F̃1�T1� � 2��c2 1 a2 2 2�K�c� 1 2E�c�� . (7)

In order to compare the stability of various states, we re-
quire the reduced energy density. In the localized regime,
c2 , 1, we denote this by g1�c�

g1 � F̃1�T1��T1 � c2 1 a2 2 2 1
2E�c�
K�c�

. (8)

We now require the energy density in the traveling regime.
The traveling limit c2 . 1.—The modulation period

down the original helix corresponds to the time taken for
our particle to travel from one peak to the next in the po-
tential. It is calculated using Eq. (5):

T2 � 2
Z p�2

0

df

�f
� 2kK �k� , (9)

where k � 1�c, and thus k , 1. The reduced energy of a
period is

F̃2�T2� � 2��a2 2 c2�kK �k� 1 2cE�k� 2 ap� . (10)

The corresponding energy density, g2�c� for c2 . 1, is

g2 � F̃2�T2��T2 � a2 2 c2 1
2

kK �k�

∑
E�k�

k
2

ap

2

∏
.

(11)

Combining g1�c� and g2�c�, Eqs. (8) and (11), we now
have the energy density g�c� for the entire range of c. Fig-
ure 2 illustrates the energy density plots for three different
values of the chiral strength, described by the parameter a.

We can see that at the transition point c � 1 the two
energy densities approach each other. However, the densi-
ties are not smoothly joined, forming a cusp which turns
from pointing downward to upward upon the parameter a

increasing past a critical value ac � 2�p . Invoking the
identities for differentials of complete elliptic integrals

FIG. 2. Reduced energy density, g�c�, for a � 0.2, 2�p, 1.
One has g1�c� for c2 , 1 and g2�c� for c2 . 1.
dK
dk

�
E

k�1 2 k2�
2

K

k
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dE
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�
E 2 K

k
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we can minimize the reduced free energy with respect to
k, or equivalently c, by setting dg�dc � 0. As evident
from Fig. 2, minima exist only in the region c2 . 1, that
is, in g2�c�, and only when a . ac. There are no minima
in g1. The analogous problem of a cholesteric liquid in the
presence of an electric field [11] is similar. The condition
dg�dc � 0 fixes c since, for a given a, the constant c (or
equivalently k) must satisfy

a �
2E�k�
pk

for a . ac � 2�p . (12)

The period of f�u� modulation is T � 2kK�k� in units
of j. For each such period along the helical pitch axis,
f increases by p, the director unwinds once, and there-
fore one loses 1 of the Tjq0�p � 2akK �k��p twists
imprinted over the interval T . The imprinting efficiency is
given by the fractional number of twists lost,

e0 �
2akK�k� 2 p

2akK�k�
. (13)

Provided that e0 is close to unity, much of the chirality can
be preserved; see Fig. 3.

For small chiral power a , ac � 2�p , the minimizing
condition dg�dc � 0 has no solution and the minimum
free energy occurs exactly at c � 1. The cusp has the en-
ergy density g � �2�p�2 2 1, and a logarithmically diver-
gent period T which implies e0 � 1. The director largely
follows the original helical twist, the deviation from which
never reaches p within a finite distance. The imprinting is
therefore successful.

For chiral power a . ac � 2�p , minima are found for
c . 1. The period is no longer infinite and some twists
are lost. For large a, i.e., the nematic penetration depth
large compared to the cholesteric pitch, we can expand the
elliptic function for small k to find a � c�1 2 k2�4 2

3k4�128 . . .�. Alternatively k � 1�a�1 2 1�4a2 . . .� and
we find a period of T � 2kK�k� � p�a in units of j.
Thus for every actual distance of pj�a � p�q0, f accu-
mulates an increment of p . That is, e0 ! 0, correspond-

FIG. 3. Imprinting efficiency vs network parameter a. The
slope at the critical point a � a1

c diverges and the efficiency
decays rapidly.
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ing eventually to the case of complete unwinding of the
imprinted helical pattern.

In writing Eq. (2), we have assumed that the chiral sol-
vent was completely replaced with an achiral one as was
the case in experiment [6]. However, we can trivially gen-
eralize F to the case where the current solvent is chiral,

F �
Z

dz
1
2 �K2�u0 2 q�2 1 D1 sin2�u 2 q0z�� , (14)

where q is the wave number that the solvent would in-
troduce in the absence of cross-links. Our previous case
corresponds to q � 0. The mathematical procedure re-
mains applicable, with an adjustment of the parameter a �
jq0 to

a0 � j�q0 2 q� ,

which indicates a chiral environment of the same handed-
ness can help preserve the chirality by reducing the value
of a (negative values of a are mathematically equivalent
to 2a, if we switch the sign of the f modulation). A chi-
ral environment of the other handedness, q , 0, instead
increases a and has the opposite effect. It reduces im-
printing, as one might expect. By simply varying q, via
the solvent composition, we have a powerful way to map
out the wind-unwinding transition.

Another interesting case is the induction of a cholesteric
state in an initially uniform nematic network upon intro-
ducing a chiral solvent [12]. That is, q0 � 0 and a0 � jq,
where q is the chiral pitch wave number due to the chiral
solvent. In this case, e0 given in Fig. 2 can be interpreted
as the network resistance to imprinting—until the point
a0 reaches 2�p there will be no helicity induced in the
network at all, and thereafter it rises with a0.

Finally, by varying the amount of solvent in the crossed
network, we can also tune, i.e., contract or expand, the
volume relative to its original: V ! bV . If the added
solvent is nematic, we expect from molecular interpreta-
tions [13] K2 ! K2 for the special case where the local
nematic order is preserved (the nematic order variation
due to the solvent or temperature will be examined
elsewhere), but D1 ! D1�b as it depends on cross-link
density. Finally assuming an isotropic expansion or
contraction, q0 ! q0b21�3, we arrive at

a ! ab1�6.
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Thus swelling can, albeit weakly, increase the parameter
a in our model and discourage the preservation of the
imprinted chirality.

In conclusion, we have proposed a continuum model
for chiral imprinting in nematic elastomers. The model
predicts the residual chirality when the chiral solvent is re-
moved. A twist-untwist transition emerges from the theory,
and an experimental verification of this transition would be
a useful test of the theory presented here. We also expect
that chiral imprinting will continue to be important for fu-
ture display devices [5]; we suggest here how such selec-
tive reflection may be modified by the degree of swelling,
by temperature, and by the character of the solvent. Our
further work is being focused on the mechanical properties
of networks; we expect an external mechanical field will
have substantial influence on the imprinting of chirality.
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