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Pattern Formation in Inclined Layer Convection
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We report experiments on thermally driven convection in an inclined layer of large aspect ratio in
a fluid of Prandtl number s � 1. We observed a number of new nonlinear, mostly spatiotemporally
chaotic, states. At small angles of inclination we found longitudinal rolls, subharmonic oscillations,
Busse oscillations, undulation chaos, and crawling rolls. At larger angles, in the vicinity of the transition
from buoyancy- to shear-driven instability, we observed drifting transverse rolls, localized bursts, and
drifting bimodals. For angles past vertical, when heated from above, we found drifting transverse rolls
and switching diamond panes.

PACS numbers: 47.54.+r, 05.45.Jn, 47.20.Bp, 47.27.Te
Rayleigh-Bénard convection (RBC) of a horizontal fluid
layer heated from below has long served as a paradigm for
pattern forming systems [1]. Variations that alter the sym-
metries, such as Poiseuille flow [2], rotation around a ver-
tical axis [3], and vertical vibrations [4], continue to lead
to important insights. Another case, of particular meteoro-
logical and oceanographic interest, is RBC of a fluid layer
inclined with respect to gravity. This system is not only
well suited for the study of buoyancy and shear flow driven
instabilities, but may also serve, along with liquid crystal
convection [5] and Poiseuille-Bénard convection [2], as a
paradigm for anisotropic pattern forming systems.

As with RBC, the onset of inclined layer convection
(ILC) occurs when the temperature difference DT across
the layer is sufficient for convection rolls to form. The
main difference from RBC is that the patternless base state
is characterized not only by a linear temperature gradient
but also by a symmetry-breaking shear flow. As shown
in Fig. 1, the component of gravity tangential to the fluid
layer, gk, causes buoyant fluid to flow up along the warm
plate and down along the cold plate. For small angles of
inclination u, buoyancy dominates over shear flow, and
the primary instability is to longitudinal rolls (LR) whose
axes are aligned with the shear flow direction [6]. With
increasing u, buoyancy effects decrease, and for u . 90±

buoyancy is stabilizing. Above a critical angle uc the shear
flow causes a primary instability to transverse rolls (TR)
with roll axes perpendicular to the shear flow [6]. The few
prior experiments [7] on ILC showed reasonable agree-
ment with the linear theory [6,8–10]. These experiments
also demonstrated that LR are unstable to some form of un-
dulations [7], in qualitative agreement with theory [9,10],
but the quantitative details of the state were inaccessible
due to experimental limitations.

Here we report the first experimental results on pattern
formation in ILC for large aspect-ratio systems in a range
of inclination angles 0± # u # 120±, i.e., from horizon-
tal to past vertical. We found many unpredicted states
when increasing DT above the critical temperature differ-
ence, DTc. For 0± # u & 77.5± we observed longitudinal
rolls, subharmonic oscillations, Busse oscillations, undula-
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tion chaos, and crawling rolls. In the neighborhood of the
codimension two point [8] for thermal and shear-driven
instability (77.5± & u & 84±), we observed drifting bi-
modals, drifting transverse rolls, and localized longitudi-
nal and transverse bursts. For inclinations u * 84± we
found drifting transverse rolls, switching diamond panes,
and longitudinal bursts. Most of these novel states were
spatiotemporally chaotic and were found very close to on-
set, where theoretical progress should be possible.

Experiment.—Our experimental apparatus consisted of
a water-cooled pressure chamber containing a convection
cell of diameter 10 cm, subdivided into two large aspect
ratio rectangular cells. The experimental design was simi-
lar to the one described in [11]. The optically flat up-
per and lower plates of the convection cell consisted of
1 cm thick single crystal sapphire and single crystal sili-
con, respectively. The sapphire plate was cooled by a wa-
ter bath, while the silicon plate was heated by an electric
film heater. The convection patterns were visualized by
the shadowgraph technique [11]. The sidewalls were con-
structed of nine layers of notebook paper, providing the
best possible thermal matching between cell boundaries
and the fluid, reducing sidewall forcing [11]. As measured
interferometrically, the plates were parallel to 60.5 mm.
The pressure chamber housing the convection cell held
both the cooling water and the convecting gas to (41.37 6

0.01) bars, regulated to 65 3 1023 bar. The tempera-
tures of the two plates were regulated to 60.0003 ±C.
Throughout the experiment the mean temperature was kept

FIG. 1. Schematic of the base flow. (a) Heated from below and
(b) heated from above; cell height d, gravitational acceleration
g, shear flow v, and temperature difference DT � T2 2 T1 with
T2 . T1.
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FIG. 2. Onset of longitudinal rolls (¶) and drifting transverse
rolls (�). Also plotted are the predicted onsets for longitudinal
(dashed) and transverse rolls (solid) [13].

constant at �27.00 6 0.05� ±C. We determined the cell
height d by measuring the pattern wave number at onset
for u , 60± and comparing it with the theoretical value of
qc � 3.117�d. We found d � �710 6 7� mm and d �
�702 6 7� mm for two sets of experiments. The two
convection cells had a size G1 � �21 3 42�d2 and G2 �
�14 3 48�d2, with the shorter sides oriented perpendicu-
lar to the incline. This geometry was chosen to ensure a
two-dimensional shear flow profile across the flow [12].
We report quantitative results from cell 1; there was no
significant difference in the results for cell 2. For all data,
the Prandtl number was s � n�k � 1.07 as determined
in [11], with the kinematic viscosity n and thermal dif-
fusivity k. The vertical thermal diffusion time was tv �
d2�k � 3.0 s. Inclines from 0± (horizontal) to 120± (30±

past vertical) were possible, with an accuracy of 60.02±.
Following [1] we calculated the Boussinesq number P �u�
for the corresponding horizontal layer to estimate non-
Boussinesq effects. At DTc�u� for u , 70± we found
P �u� , 1.0, putting the flow into the Boussinesq regime.
For larger angles P increased linearly to 3.0 for the largest
temperature differences investigated.

Onset of convection.—In ILC, the forward bifurcation
to LR is predicted to occur at the critical Rayleigh
number Rc�u� � Rt

c�0±�� cosu where Rt
c�0±� � 1708 �

ad3gDTc�kn (a is the thermal expansion coefficient) [6].
The threshold for the forward bifurcation to shear-driven
TR at large inclination angle is more complicated, and
can be determined only numerically [6,9].

FIG. 3. Digitally enhanced shadowgraph image [14] of bi-
modals drifting from left to right in cell 1 for u � 77.6±, e �
0.01 [15]. The rolls at the edges of the cell are caused by side-
wall imperfections.
We determined DTc for convection by quasistatically
increasing DT in steps of 1 mK every 20 min (400tv )
past the point where convection was observable and then
decreasing the temperature difference similarly. For all
angles we observed forward bifurcations. Figure 2 shows
the measured Rc�u�, as well as the theoretically predicted
onsets for both the longitudinal and the transverse insta-
bilities [13]. We found agreement with theory for the on-
set of LR: the experimentally observed value was Rc�u� �
Re

c �0±�� cosu with Re
c �0±� � 1687 6 24. We did not, how-

ever, observe the theoretically predicted stationary TR,
but instead drifting TR (DTR) at a slightly larger critical
Rayleigh number. The drift down the incline may be at-
tributed to the broken symmetry across the layer which is
caused by the temperature dependence of the fluid parame-
ters (non-Boussinesq effects). Very interesting is the vicin-
ity of the theoretically predicted codimension two point at
uc � 77.76± [13], where LR and TR have the same on-
set value. Experimentally, we found a forward bifurca-
tion to DTR above uc � �77.5 6 0.05�±, and in the range
77.5± # u # 84± DTR lost stability to drifting bimodals
(DB) above e � 0.001. As shown in Fig. 3, DB consist
of a superposition of LR and DTR. Here e � DT

DTc�u� 2 1
is the reduced control parameter. Theoretically, Fujimura
and Kelly [8] predicted a forward bifurcation to transverse
rolls, which lose stability to bimodals at e � 0.001 in a
narrow angular region. We find good agreement with these
predictions, but with the difference that the experimentally
observed patterns are drifting.

FIG. 4. (e, u) phase space showing the boundaries between
the different nonlinear states. LR (longitudinal rolls), BO (Busse
oscillations), SO (subharmonic oscillations), UC (undulation
chaos), CR (crawling rolls), DTR (drifting transverse rolls), DB
(drifting bimodals), LB (longitudinal bursts), TB (transverse
bursts), and SDP (switching diamond panes). The dotted line is
the predicted onset of Busse oscillations for s � 0.7 [9], the
dashed line is the predicted onset of undulations [13], and the
solid lines are guides to the eye. Open circles (UC) were mea-
sured via defect density [16], open diamonds (SDP) were mea-
sured via correlation length [16], and the remainder were
measured visually. The inset shows a magnification of the
codimension-two region.
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FIG. 5. Contrast enhanced shadowgraph image [14] of subhar-
monic oscillations in cell 1, with a turbulent burst in the upper
left corner. u � 17±, e � 1.5 [15].

Nonlinear states.—Figure 4 shows the measured phase
boundaries for the ten observed nonlinear convective
states. At low angles (u , 13±), LR are stable up to e � 1,
above which the novel state of subharmonic oscillations
(SO) sets in. These oscillations are characterized by a
pearl-necklace-like pattern of bright (cold) spots that travel
along a standing wave pattern of wavy rolls. As shown in
Fig. 5, these oscillations appear in patches whose location
changes in time. Typical frequencies of the oscillations
were measured to be 1 to 3 cycles per tv . A recent theo-
retical analysis has shown agreement with this value [17].
With further increase in e, localized patches of traveling
oscillations burst intermittently. Within O �tv � the ampli-
tude of the rolls’ waviness increases, the pattern tears trans-
verse to the rolls as shown in the upper left corner of
Fig. 5, and fades away leaving an almost parallel roll state.

For u � 10± and e * 4, we observed patches of the
well-described Busse oscillations (BO) coexisting with
patches of the SO [1,18]. As shown by the dotted line in
Fig. 4, our data for the onset of the BO agrees well with

FIG. 6. Digitally enhanced shadowgraph images [14] of con-
vection states at u � 40± in cell 1. (a) Undulation chaos at
e � 0.07. (b) Crawling rolls at e � 0.88 [15].
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the theoretical prediction calculated for s � 0.7 [9]. It is
surprising, however, that both oscillations (SO and BO)
coexist as localized patches in the same cell.

At intermediate angles (25± , u , 70±), where the ini-
tial instability is to LR we found with increasing e that LR
were unstable to undulations. Although the experimen-
tally determined value for the instability e � 0.01 agrees
well with the theoretical prediction (see Fig. 4) [9,10,13],
we did not observe a stationary pattern of undulations, but
a defect-turbulent state of undulation chaos (UC), similar
to that found in electroconvecting nematics [19]. A snap-
shot of UC is shown in Fig. 6a. At e * 0.11, the UC
begins to “twitch” in the direction transverse to the rolls
on time scales O �tv �. With increasing e, the amplitude of
the twitching increases and the rolls eventually tear, with
the ends “crawling” in the direction transverse to the origi-
nal rolls. A snapshot of crawling rolls (CR) is shown in
Fig. 6b.

In the vicinity of the codimension-two point, at uc, we
observed drifting bimodals quite close to onset. As shown
in Fig. 4, for small angles the existence region of the pure
DB is limited by localized transverse bursts (TB), while
for large angles by DTR. The TB appear subharmoni-
cally, suggesting a secondary instability [20]. A snapshot
of transverse bursts and the evolution of a single burst is
shown in Fig. 7. In this region of phase space the LR occur
in patches that grow and decay intermittently while TB nu-
cleate in high amplitude LR regions. As shown in the time
series in Fig. 7, TB grow over the period of a few tv and
then decay rapidly. Above e � 0.8 the DB are unstable to
localized longitudinal bursts (LB) as shown in Fig. 8a. As
shown in Figs. 8b–8i, a few longitudinal rolls grow locally
to large amplitude and then quickly fade. With both types
of bursts, the bursts increase in both density and frequency
when e is increased, eventually developing into a turbulent
state at e * 1.

FIG. 7. Digitally enhanced images [14] of (a) transverse bursts
in spatiotemporally chaotic longitudinal rolls, at u � 77± and
e � 0.04 in cell 1 [15]. (b)– (i) Time evolution of a single burst
at time intervals 0.36tv .
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FIG. 8. Digitally enhanced images [14] of (a) longitudinal
bursts at u � 79± and e � 0.10 in cell 1 [15]. (b)– (i) Time
evolution of a single burst at time intervals 0.09tv .

Past 90±, we continued to observe shear-driven convec-
tion patterns. DTR are the primary instabilities; however,
they are unstable to switching diamond panes (SDP) at
e � 0.07. The state is characterized by spatiotemporally
chaotic switching on time scales of O �tv� from 145±

to 245± of large amplitude regions of DTR, as seen in
Fig. 9a. At e * 0.1, SDP are unstable to LB.

Inclined layer convection in the weakly nonlinear regime
displays a rich phase diagram, with ten different states ac-
cessible over the range of parameters investigated. The
phase space naturally divides into several regions of char-
acteristic behavior which have so far been characterized
semiquantitatively. All states but LR and DTR are spatio-
temporally chaotic. Most instabilities occurred very close
to onset and further theoretical description should be pos-
sible. Especially interesting is the bursting behavior, which
may be related to turbulent bursts in other shear flows [21].

FIG. 9. Digitally enhanced shadowgraph images [14] of (a)
switching diamond panes (e � 0.1, u � 100±) and (b) longi-
tudinal bursts within diamond panes (e � 0.19, u � 100±) in
cell 1 [15].
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