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Formation of Electron Strings in Narrow Band Polar Semiconductors
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We show that linear electron strings may arise in polar semiconductors. A single string consists of
M spinless fermions trapped by an extended polarization well of a cigar shape. Inside the string the
particles are free although they interact with each other via Coulomb forces. The strings arise as a result
of an electronic phase separation associated with an instability of small adiabatic polarons. We have
found the length of the string which depends on dielectric constants of semiconductors. The appearance
of these electron strings may have an impact on the effect of stripe formation observed in a variety of
high-Tc experiments.

PACS numbers: 71.38.+ i, 61.82.Fk, 63.20.Kr, 71.10.2w
The creation of polarons in solids has proved to be an
important phenomenon. The idea originated with Landau
in the 1930s to explain a spectrum of F centers in alkali
halides. The first consistent theory was built up by Pekar in
the 1940s and is elegantly presented in his book [1]. There
a charged particle trapped by the polarization of a polar
solid was considered. An adiabatic approximation for the
motion of the atomic lattice was assumed; i.e., the kinetic
energy of the atoms was neglected. This approximation
is based on the fact that the mass of electrons is much
smaller than the atomic mass and therefore the electrons
move much faster than the atoms. Such a charged particle
together with the surrounding polarization cloud was called
a polaron. The effective radius of this polarization cloud is
the radius of the polaron. Pekar considered polarons with
a radius which is much larger than the distance between
atoms in the lattice.

The adiabatic ground state of a single electron interact-
ing with dispersionless nonpolar optical phonons on one
dimensional molecular chain has been studied by Rashba
and Holstein [2,3]. While the Holstein model has been
studied intensively [4,5], until now the traditional small
polarons described in the framework of Pekar-Frölich (PF)
Hamiltonian [1] have not been considered. The creation of
electronic states with small radii involves a large amount
of a polarization or a deformational energy and therefore,
such states give rise to an electronic mechanism for the cre-
ation of defects in solids [6]. In this case the kinetic energy
of the atomic lattice is much smaller than the polarization
energy, and so it may be neglected. Therefore these states
with small radii may be studied in the adiabatic limit.

We study here M spinless fermions (M ¿ 1) inter-
acting with “polar” (longitudinal optical) phonons in the
framework of the PF polaron model [1]. The Hamil-
tonian of interest has both long-range electron-phonon
(EP) interactions (�1�q in momentum space) and
long-range electron-electron (EE) Coulomb interactions,
whereas the Holstein-Hubbard (HH) model much studied
recently (see, in particular, the recent papers [4]) has
both short-range EP and short-range EE interactions. We
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have found that in polar solids with a narrow band there
may arise an electronic phase separation introduced
originally in the physics of magnetic semiconductors by
Nagaev [7] but here purely due to the EP interaction.
Note that due to the long-range character of EE inter-
action the results obtained in this model differ strongly
from those associated with the HH and deformation
potential models [8], where the EP interaction is very
short ranged (typically on-site or nearest neighbors).

In essence we show that the overall attraction caused
by the strong polaronic effects leads effectively to a “col-
lapse” of fermions into the smallest possible region, result-
ing in a phase separation into a “dense” blob of trapped
fermions and an undoped lattice. This “blob” cannot be
on a single site because the holes are fermions; the blob
assumes a stringlike shape because this minimizes the
Coulomb energy for a connected blob. Full minimization
of the Coulomb energy alone would, at least in the low
density limit, lead to a widely separated Wigner crystal.
But it was found [9] that at strong EP coupling a Wigner
crystal of polarons is unstable. Such an instability may
suggest novel types of electron structures such as electron
strings, found in the present paper. A single string con-
sists of M electrons self-trapped by a single potential well
self-created by these electrons. Inside the string the elec-
trons move as free particles. All other flat disk-shaped
multielectron configurations have higher energies than the
string configuration. In agreement with all existing results
[2–5] we find that for strong coupling with polar phonons
the ground state for a single particle in any spatial dimen-
sion is of the same type as the single site Rashba-Holstein
polaron [2,3]. However, we found that if the string con-
sists of M particles and the number M is larger than some
critical value Mc (M . Mc � 5132 for the model pa-
rameters we have chosen), then the string configuration
has a lower energy than M separated polarons suggesting
the formation of electron strings is possible.

To describe the fermion strings in a Hartree-Fock (HF)
approximation we have to first find an appropriate basis of
single particle wave functions. Therefore, we start with the
© 2000 The American Physical Society
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set of discrete Schrödinger equations describing a single
fermion in a tight-binding model on a hypercubic lattice:

2tD̂cnp 1 ewncnp � Ecnp , (1)

where t is a hopping integral, e is the fermion charge, cnp

is the wave function of the pth self-trapped fermion on
the nth site, wn is the total polarization potential created
by M fermions trapped by this potential, and D̂ is a lattice
version of the Laplacian operator which for the hypercubic
lattice is defined as D̂cn p � 2

P
i�cn p 2 cn1i p�, where

the sum is carried out over all the nearest-neighbor sites
around the nth site. The overall potential wn is actually
a superposition of individual potentials created by the in-
dividual fermions and is self-consistently determined with
the aid of the discrete Poisson equation:

e�

a2 D̂wn � 14pe
MX

p�1

jcnpj
2, (2)

where the index p indicates the summation carried over all
trapped fermions, the parameter a is the distance between
neighboring atoms in the lattice, and e� is the effective
dielectric constant, which was originally obtained by Pekar
[1] in the case of large polaron as e�21

� e21
` 2 e

21
0 .

Pekar [1] invented the functional J (adiabatic potential)
describing the total energy of the fermions and the lattice
degrees of freedom which is defined as

J � T 1
X
np

ewn jcnpj
2 2

e�

8pa2

X
n

wnD̂wn , (3)

where T � 2t
P

np c�
npD̂cnp is an electron kinetic en-

ergy. Equations (1) and (2) may be obtained by a mini-
mization of J with respect to the fermion wave function
cnp and the total polarization potential wn, respectively,
provided that the wave function satisfies the normalization
condition

P
n jcnpj

2 � 1. In the sums the index n indi-
cates a summation over all lattice sites. The polarization
potential can be easily obtained from Eq. (2) and substi-
tuted into Eq. (3) to get

J � T 1
2pe2a2

e�

X
npmq

jcnpj
2D̂21 jcmqj

2. (4)

The extrema, critical points of J are determined with the
aid of the following systems of equations having nonlocal
nonlinearity:

2tD̂cnp 2 ca3cnp

X
mq

D̂21 jcmqj
2 � Ecnp , (5)

where the dimensionless coupling constant, c, is defined
as c � 4pe2

e�a . In the limit �Mc�t� ! ` Eq. (5) allows a
complete set of the following exact string solutions, in
which each of the M fermions is occupying N neighboring
sites with equal probability; i.e., jcnpj

2 � 1�N if the nth
site is in the string and cnp � 0 otherwise. In other words,
this complete set of the single particle wave functions of
the trapped fermions takes the form

cnp�kx� �

(
1

p
N

exp�ikxnx� if 1 # nx # N ,
� 0, otherwise ,

(6)

where kx is the momentum of the pth fermion. We assume
that the string is oriented in the x direction and located on
the sites, from nx � 1 to nx � N . Inside the string each
trapped fermion has free motion with the quasimomentum
k oriented in the direction of the string.

The described wave functions associated with fermions
self-trapped into the string correspond to the following
eigenvalues, E, of Eq. (5):

ENM�k� � 2dt 2 2t cos�ka� 1
2t cos�ka�

N
2 cMIN ,

(7)

where d is the dimension of the hypercubic lattice con-
taining the string and the constant IN is a dimensionless
integral. When the string is embedded into a 3D atomic
lattice the integral, IN , takes the form

IN �
Z p

2p

Z p

2p

Z p

2p

dx dy dz G�x, y, z�
�2p�3

µ
sin�Nx�
N sin x

2

∂2

,

(8)

where G21�x, y, z� � 3 2 cosx 2 cosy 2 cosz is a 3D
lattice Green’s function. For N � 1 the integral IN can
be expressed through some elliptic integrals and is equal
to I1 � 0.526 416. With the increase of N the value of
IN decreases as IN � A

Na , where A and a are some near
constant parameters. The dependence of A and a on N is
extremely weak. So for 10 # N # 2.0 3 103 the value IN

can be well extrapolated with A � 0.9743 and a � 0.85.
For periodic boundary conditions at the ends of the

string the fermion momentum k is simply quantized:
knx � 2pn��aN�, where, for example, for even M the
value n � 2M�2, . . . , 21, 0, 1, . . . , M�2 2 1. With the
use of Eq. (7) and the Pauli exclusion principle putting
each fermion on a separate energy level we first calculate
the total electronic energy of M fermions. Taking into
account this electronic energy and the polarization energy
of the crystal we obtain the expression for adiabatic
potential JN ,M in the form:

JN ,M � 6tM 2
2t�N 2 1� sin�pM�N�

N sin�p�N�
2

cM2IN

2
,

(9)

where M is the number of trapped particles and the second
term on the right-hand side of this equation is associated
with the filling of the energy levels in the string by the
fermions.

One sees from the dependence J on N and M that for
a single trapped particle, i.e., M � 1, the lowest energy
corresponds to a string with just one site, i.e., N � 1. This
is an adiabatic small polaron in the PF model similar to the
Holstein-Rashba polaron. Also, one sees that the value of
the adiabatic potential JN ,M decreases faster with M than it
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increases with the length of the string N: JN ,M � 2
AM2

Na .
The strings with lowest energy have the same number of
sites as the number of particles M � N . Also, the larger
the value of N the lower the energy of the string. A
string of infinite length, N � `, (a stripe) will have the
lowest (ground state) energy. All of the above calculations
are exact in the limit Mc�t ! `. However, in numerical
investigations of small clusters (linear chains) consisting
of from 2 to 11 atoms we have obtained results similar to
the expression for the adiabatic potential, Eq. (9), which
are valid for a wider range of values of the parameter c�t
(see, for example, in Ref. [10]). This indicates that the
described estimations (9) are valid for a wider range of
the value of the parameter Mc�t than it was originally
assumed.

To estimate the contribution to the total energy from
the Coulomb forces between fermions we employ the
HF many-body wave function of M self-trapped particles
C�1, 2, . . . , M� having the form of a Slater determinant of
single particle wave functions, Eq. (6).

C�1, 2, . . . , M� �
1

p
M!

det kci�kj�k . (10)

Such a choice of wave function proved to be good when de-
scribing the Coulomb correlations in the Hubbard model in
the limit of strong Hubbard repulsion U�t ! ` [11]. Af-
ter having calculated the pair correlation function, we then
use this function to find the dependence of the Coulomb
energy on N and M given by

VHF � ec
2M2

N

Z p

0

dx
x

µ
1 2

sin2�Mx�
M2 sin2x

∂
, (11)

where ec �
e2

ēa and the parameter ē is the effective dielec-
tric constant of the crystal. Numerical estimations of the
integral (11) show that the function VHF behaves similarly
to that obtained independently in the electrostatic approxi-
mation where we assume that the M point charges are
equidistantly located in the string. For such an assump-
tion the long-range part of the Coulomb interaction of M
particles with charge e separated by a distance aN�M and
self-trapped into a string of a length N is approximately
equal to

EC �
ecM2 logM

2N
. (12)

For the next illustration we use EC instead of VHF in the
expression for the adiabatic potential (9). Because of the
negative contribution in VHF arising from exchange forces
the value VHF # EC . Such a substitution is therefore jus-
tified if we are interested in estimating an upper bound of
the string Coulomb energy. Also it gives the explicit ana-
lytic expression (12) which is convenient to analyze. As a
result the total energy which consists of the adiabatic po-
tential JNM and the energy of the Coulomb repulsion EC

equals ES�N , M� � JNM 1 EC , where JNM is defined in
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Eq. (9). For a fixed M the total energy always has a mini-
mum when N is equal to

N �
µ

ec logM
aAc

∂b

where b � 1��1 2 a� . (13)

The total energy ES�N , M� decreases rapidly with M and
increases with N . Since the double occupation of the sites
for the spinless fermions discussed is prohibited, the num-
ber M cannot be larger than N . Then, the minimum of the
total energy ES corresponds to the string with M � N and
this energy is given by

�ES�min � 4tM 2
�1 2 a�cAM22a

2
, (14)

where the number of trapped fermions is determined with
the aid of the equation

M �

µ
ec

aAc
logM

∂b

. (15)

On the other hand, the energy of M separated individual
polarons is estimated as equal to or greater than

J � MJ11 $ 4tM 2
cMI1

2
. (16)

The inequality in this equation is realized when the in-
terpolaron Coulomb repulsion is taken into account. The
comparison of Eqs. (14) and (16) shows that the total en-
ergy of the string �ES�min � M22a decreases faster with M
than the energy of the individual polarons J � M. There-
fore there is the critical value Mc � �bI1�A�b � 5132 so
that if M . Mc the energy of the string is smaller than the
energy of M separated polarons: �ES�min , MJ11 and the
string configuration corresponds to the ground state.

It is very interesting to compare this result with other
calculations. Aubry et al. [4] have found exact results in
the “anti-integrable limit” (t � 0) of HH model. Depend-
ing on the ratio between the Hubbard and EP coupling
constants U�c there arises three types of states: bipola-
ronic, polaronic, and a mixture of bipolaronic and pola-
ronic structures, respectively. Because of the short-range
character of the Coulomb-Hubbard EE repulsion and the
absolute localization (t � 0), these structures are strongly
degenerate, i.e., have the same energy. For example, at
large value U�c ¿ 1, when a double occupation of the
lattice sites is prohibited, the energy of any such pola-
ronic structure does not depend on the distance between
polarons: they can collapse into a single blob of any shape
or are separated into a Wigner crystal having the same to-
tal energy. We obtain exactly the same result with the use
of our HF approach applied to HH model. In this case
the many-body HF wave function of the spinless fermi-
ons has the same form as a Slater determinant built up
from single particle wave functions obtained from the solu-
tions of the discrete nonlinear Schrödinger equation in the
limit cM�t ! ` [10]. In spite of the different shapes and
sizes for the localized blobs the energy per particle remains
the same and is equal to a polaron shift. This degener-
acy is broken when t fi 0. Then, due to antiferromagnetic
superexchange between electron spins, with the coupling
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J � t2�U, spin resonance bipolarons corresponding to the
lowest energy state are created [4]. We were not able to get
the spin resonance bipolarons since the HF method is not
applicable for a description of the spin-correlation effects.
However, with the aid of another many-body wave func-
tion with Jastrow factors which take spin-spin correlations
into account properly this result was indeed reproduced
[10]. This shows that the spin-spin interactions in the HH
model gives rise to a bipolaron ground state and the very
extensive results on the HH model [4] are consistent with
calculations obtained with the aid of our approach.

The results obtained within the HH model are truly dif-
ferent in a fundamental way from those we have obtained
within the PF model. The reason is that the long-range
EE attraction mediated by phonons in the PF model breaks
down the degeneracy in the “anti-integrable limit” between
polarons and strings. We have found that for the larger
length of the localized string, the media around the string
is polarized more efficiently and, therefore, the energy per
particle is lower (the polaron shift increases, proportional
to the coupling constant). This is in contrast with the prop-
erties of polaronic structures (including strings) in “the
anti-integrable limit” of the HH model where the energy
per particle does not depend on the string length or any
shape of the blob (due to the degeneracy discussed above)
[4]. This polaron shift in the PF model does not depend
on the spin-spin exchange constant which was most im-
portant for a bipolaron formation in HH model [4]. The
long-range Coulomb repulsion between the spinless fermi-
ons partially compensates this energy decrease and breaks
down the infinite strings into finite ones with a length de-
fined by Eq. (13).

Although in the adiabatic limit for PF and HH model one
recovers similar (although different) nonlinear equations,
the results obtained are fundamentally different: in HH
models there are bipolarons and no strings in the ground
state [4], while in the PF model the ground state corre-
sponds to a string configuration. Most importantly, the
described phase separation may be studied with the aid of
the Lang-Firsov transformation [12] that allows not only
analytic study of the strong coupling arguments but also
to extend the applicability of our results far beyond the
adiabatic limit. With the use of this unitary transformation
the EP interaction can be reduced to an effective EE attrac-
tion, which has long-ranged and short-ranged character for
PF and HH models, respectively. After the next averaging
over the phonons one obtains two models with different
types of effective EE interaction. Then, it is clear that the
PF model has a phase separated ground state associated
with the long-range attraction between the heavy (t ! 0)
polarons. Such an attraction between polarons in the HH
model is absent and, therefore, in the HH model there is
no phase separation and the ground state is associated with
bipolarons [4].

Thus, we arrive at the conclusion that in polar nar-
row gap semiconductors small adiabatic polarons are un-
stable; this instability induces the formation of strings
which are linear multiparticle objects. These strings are
created by a polarization potential and have a length equal
to the number of self-trapped fermions, which is deter-
mined by the dielectric constants of the semiconductor.
The string may not have only a linear form but may also be
bent, be curved, or even be a closed loop. Such curved con-
figurations will probably correspond to low energy excita-
tions of the string. The concept of the string is much more
general. The strings may be both insulator and metal. Such
a variety in the different types of strings may give rise to
different novel effects which could arise in materials with
narrow bands: both semiconductors and metals. In fact, for
narrow band metals the criterion for the string formation is
significantly improved. Here, we have to compare the total
energy of the string (as described above) with the Fermi
energy (which is much larger than the energy of sepa-
rated polarons). But in metals the Coulomb repulsion is
significantly screened. It seems that for such metals there
may arise a coexistence of strings and free fermions, the
balance of which is dictated by a competition of Fermi en-
ergy and Coulomb forces. These complicated issues will
be discussed in our future publications.
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