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C, P , and T Invariance of Noncommutative Gauge Theories
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In this paper we study the invariance of the noncommutative gauge theories under C, P, and T
transformations. For the noncommutative space (when only the spatial part of u is nonzero) we show
that noncommutative QED (NCQED) is parity invariant. In addition, we show that under charge conjuga-
tion the theory on noncommutative R4

u is transformed to the theory on R4
2u , so NCQED is a CP violating

theory. The theory remains invariant under time reversal if, together with proper changes in fields, we
also change u by 2u. Hence altogether NCQED is CPT invariant. Moreover, we show that the CPT
invariance holds for general noncommutative space-time.

PACS numbers: 11.30.Er, 11.15.–q, 11.25.Sq
I. INTRODUCTION

Recently it has been shown that the noncommutative
spaces arise naturally when one studies the perturbative
string theory in the presence of D branes with nonzero B
field background, i.e., the low energy world volume theory
on such branes is a noncommutative supersymmetric gauge
theory (for a review of the field, see [1]).

Besides the string theory arguments, the noncommu-
tative field theories by themselves are very interesting.
Generally, the noncommutative version of a field theory
is obtained by replacing the product of the fields appear-
ing in the action by the �-product:

�f � g� �x� � exp

µ
i
2

umn≠xm≠yn

∂
f�x�g�y� jx�y , (1)

where f and g are two arbitrary functions, which we as-
sume to be infinitely differentiable. The “Moyal Bracket”
of two functions is

�f, g�M.B. � f � g 2 g � f .

It is apparent that if we choose f and g to be the coordi-
nates themselves we find

�xm, xn� � iumn , (2)

and this is why these spaces are called noncommutative.
Moreover, consistently we assume the derivatives to act
trivially on this space:

�xm, ≠n� � 2hmn �≠m, ≠n� � 0 . (3)

Because of the nature of the �-product, the noncommu-
tative field theories for the slowly varying fields or low
energies �uE2 & 1�, at classical level, effectively reduce
to their commutative version. However, this is only the
classical result and quantum corrections will show the ef-
fects of u even at low energies [2]. Since the derivatives
are commuting after rewriting the noncommutative fields
and their action in terms of the Fourier modes we find a
commutative field theory in the momentum space, and this
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field theory has unfamiliar momentum dependent interac-
tions [3]. In this way, we find a tool to study these theories
perturbatively, like the usual commutative field theories.

It has been shown that the noncommutative version of
f4 theory in four dimensions is two loop renormalizable
[2,4]; moreover, it is shown that the noncommutativity
parameter, u, does not receive quantum corrections.

The pure noncommutative U(1) theory has been dis-
cussed and shown to be one loop renormalizable. The
one loop beta function for noncommutative U(1) is nega-
tive (and hence the theory is asymptotically free). The
interesting result is that this one loop beta function is not
u dependent [3,5,6]. However, it is not clear whether this
property remains at higher loops. It is believed that all of
these one loop properties are a consequence of the fact that
the planar degrees of freedom of noncommutative theories
is the same as a commutative theory [7]. The question of
the renormalizability has also been addressed for noncom-
mutative QED [noncommutative U�1�1 fermions] [8].

In this paper we study another interesting question about
noncommutative theories regarding their behavior under
discrete symmetries. Since in the noncommutative spaces
we have missed the Lorentz symmetry, discrete symme-
tries and in particular the CPT invariance, in the context of
noncommutative geometry in general, are usually nontriv-
ial questions. This question has been very briefly discussed
in [8]. Hence, first we should build the noncommutative
version of QED, NCQED. We show that there are two dis-
tinct choices for the fermion representations. We will show
that these two are related by charge conjugation, so we may
call them positively or negatively charged representations.
We will give more intuitive explanations for these repre-
sentations. In Sec. III, we study the behavior of our the-
ory under discrete symmetries. In this section we show
the explicit calculations for the cases with u0i � 0 (x0

is the time coordinate) and we present only the results for
the nonzero u0i case in the last part of this section. For the
u0i � 0 cases, we show that our theory, NCQED, is parity
invariant, with the usual transformation of the fields; and
studying the charge conjugation transformations we show
© 2000 The American Physical Society 5265
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that the NCQED is not C invariant and in order to make
the theory invariant besides the usual field transformations
we should also change u by 2u. In addition, we show that
the same u changing is needed for time reversal invariance.
So, although our theory is CP violating, it is CPT invari-
ant. For the general u we show that though C, P, and T
are broken, the whole theory is again CPT invariant. The
last section is devoted to conclusions and remarks.

II. BUILDING THE NCQED

(i) Pure gauge theory.—The action for the pure gauge
theory is

S �
1

4p

Z
Fmn � Fmn d4x �

1
4p

Z
FmnFmn d4x ,

(4)

with

Fmn � ≠�mAn� 1 ig�Am, An� . (5)

In the above g is the gauge coupling constant. Let us
consider the following transformations

Am ! A0
m � U�x� � Am � U21�x�

1
i
g U�x� � ≠mU21�x� , (6)

U�x� � exp � �il�, U21�x� � exp � �2il� ,

where

exp � ���il�x���� � 1 1 il 2
1
2l � l

2
i
3!l � l � l 1 · · · (7)

U�x� � U21�x� � 1 .

Under the above transformations

Fmn ! F0
mn � U�x� � Fmn � U21�x� . (8)

Hence due to the cyclic property of integration over space
(see Appendix A) the action is invariant under (6). The
above argument can be trivially generalized to U(N) cases
by letting A and l take values in the related algebra. How-
ever, in this paper we consider only the U(1) case.

(ii) Fermionic part.—In order to write down the
fermionic part of the action with the noncommutative
U(1) symmetry mentioned above, first we need to find the
proper “fundamental” representations of the noncommu-
tative U(1) group. There are two distinct choices for that:
(a) The representation withΩ

c1�x� ! c 0
1�x� � U�x� � c1�x� ,

c1�x� ! c
0
1�x� � c1�x� � U21�x� ,

(9)

and (b) the other with(
c2�x� ! c 0

2�x� � c2�x� � U21�x� ,
c2�x� ! c

0
2�x� � U�x� � c2�x� .

(10)
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We will show that these two types of fermions are related
by a charge conjugation transformation. The next step is
finding a “covariant” derivative, Dm. For these two types
of fermions we have different “covariant” derivatives:
(a)

D
m
1c1�x� � ≠mc1�x� 2 igc1�x� � Am�x� , (11)

and (b)

Dm
2c2�x� � ≠mc2�x� 1 igAm�x� � c2�x� . (12)

One can show that with each of the covariant derivatives
defined above (with our proper fermionic representation),
the action

S �
Z

d4x c � �igmDmc 2 mc� (13)

is invariant under the noncommutative U(1) trans-
formations.

III. P , C, AND T INVARIANCE

Having the form of the action we are ready to study the
P, C, and T symmetries. For the sake of certainty up to
the last part of this section we consider the noncommu-
tative spaces, i.e., u0i � 0, and in the last paragraph we
discuss the nonzero u0i and the most general noncommu-
tative space-time.

Parity.—Under the parity, xi ! 2xi , the u parameter
is not changed [see (2)]. It is straightforward to show that
for parity transformation given by8>><

>>:
A0 ! A0 ,
Ai ! 2Ai ,
c�x� ! g0c ,
xi ! 2xi ,

(14)

the NCQED action is invariant for both of the fermionic
choices.

Charge conjugation.—Let us first study the pure non-
commutative U(1) case. Under the usual charge conjuga-
tion, C-, transformations,

Am ! 2Am , (15)

(4) is not invariant, because the first term in the F will
change the sign but the second term, �Am, An�, will remain
the same. To make the theory C invariant we note that the
Moyal bracket changes the sign if together with (15) we
also change u by

u ! 2u . (16)

The above u transformation has an intuitive explanation.
As discussed in [3,9], the gauge symmetry of noncom-
mutative U(1) is an infinite dimensional algebra which its
Cartan subalgebra (the zero momentum sector) is a U(1)
leading to a photonlike state, and all the other gauge par-
ticles look like dipoles under this U(1), whose dipole mo-
ment is proportional to the u. So, in this picture we feel
the necessity of (16), under charge conjugation.
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Hence, the noncommutative U(1) theory with parameter
u is mapped into another noncommutative U(1) theory
with 2u.

Now, we should consider the fermionic part. Since the
kinetic part of the fermionic action is unchanged, we take
the usual C transformations(

c ! ig0g2c
T

� 2ig2c� ,
c ! icTg2g0 .

(17)

Let us first discuss the fermions in 1 representation
[type (a) fermions]. Under the above transformation, with-
out changing uZ

d4x c � �igmAm�x� � c�

!
Z

d4x c � �igmc � Am�x�� , (18)

we see that this is exactly the form of interaction term for
the type (b) fermions. In other words, the types (a) and
(b) fermions are charge conjugate of each other. Let us
consider the u transformation too. By using roles given
in Appendix A, we see that forms of the interaction term
for these two types of fermions are related by (16), which
means that (17) together with (15) and (16) give proper
charge conjugation transformations, a discrete symmetry
of NCQED.

Time reversal.—First we consider the pure noncommu-
tative U(1) and then we study fermions. Under the time
reversal, in order to keep the kinetic part of our gauge field
action, Am should transform asΩ

A0 ! A0
Ai ! 2Ai . (19)

Now let us look at the terms with Moyal brackets. Since
time reversal operator involves a complex conjugation, for
any two real fields, f and g we have

f � gju ! fT � gT j2u � gT � fT ju , (20)

where fT and gT show the time reversed f and g, respec-
tively, then we have

�f, g�M.B. ! 2�fT , gT �M.B. . (21)

Since Am’s are real fields,

ig�Am, An� ! ig�Am
T , An

T � , (22)

and

F0i � ≠�0Ai� 1 ig�A0, Ai� ! ≠�0Ai� 2 ig�A0, Ai� ,

Fij � ≠�iAj� 1 ig�Ai , Aj� ! Fij � ≠�iAj� 2 ig�Ai , Ai� ,
(23)

the only way to make the theory invariant under time re-
versal is changing u as well as Am:
u ! 2u . (24)

So (19) together with (24) give the proper time reversal
transformations.

The Fermionic part.—Since the kinetic term is
quadratic in fields, c’s should obey the usual time rever-
sal transformations:Ω

c ! ig1g3c ,
c ! icg1g3 .

(25)

As for the interaction term, for the sake of certainty let
us consider the type (a) case, without changing u. We findZ

d4x c � �igmAm�x� � c�

!
Z

d4x cT � �ig�mAT
m�x� � cT � j2u , (26)

where g�m is the complex conjugate of gm. Replacing cT

and AT from (19) and (25), we obtainZ
d4x cT � �ig�mAT

m�x� � cT � j2u

� 2
Z

d4x c � �igmAm�x� � c� j2u , (27)

which is exactly the interaction term for type (b) fermions.
As we see, in order to make the NCQED time reversal
invariant, we should consider (19), (24), and (25) together.

CPT.—Now that we have studied P, C, and T , it is in-
teresting to consider the CP and CPT too. As we showed,
parity transformations remain the same as the commuta-
tive version, however each of C and T involves an extra
u ! 2u. So altogether the NCQED (with parameter u)
is CP violating, i.e., it maps the theory into NCQED with
2u, and the theory is CPT invariant. We should note that
although our system is not manifestly Lorentz invariant
CPT , as an accidental symmetry, remains valid.

Nonzero u0i and general umn .—Although a well-
defined Hamiltonian for nonzero u0i cases is not found
yet and hence the quantum theory for these cases is not
understood in the same sense as uij case, one can formally
study the discrete symmetries for these cases. As it is
readily seen from (2) under parity the u0i components
should be replaced with 2u0i , and we can show that the
(14) transformations together with this u change is the
symmetry of NCQED.

For the charge conjugation to make the theory invariant
the change in u parameter, (16), should be extended to u0i

components too.
It is straightforward to check that the time reversal in-

variance is achieved if u0i are unchanged while the uij

components should be transformed by (24). Keeping in
mind that time reversal involves a complex conjugation,
this result is expected from (2). Hence for general umn the
theory remains CPT invariant, although the theory violates
P, C, and T .
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IV. CONCLUSIONS AND REMARKS

In this paper we have reviewed the noncommutative
gauge theory and their gauge symmetry and shown that
fermions can be added in two distinct fundamental repre-
sentations of the gauge group. We have shown that these
two representations are related by charge conjugation, so
we called them positive or negative representations.

Studying the discrete symmetries for the u0i � 0 cases,
we have shown that NCQED is parity invariant under the
usual (commutative) field transformations. For C and T
transformations we showed that besides the usual field
transformations we need an extra u ! 2u transformation.
In other words, NCQED with u is charge conjugated (or
time reversed) of NCQED with 2u. Therefore, despite
being Lorentz noninvariant, in this case NCQED is CT
invariant, and hence CPT invariant. In other words P and
CPT is an accidental symmetry of the system.

For the general umn , we discussed that P, C, and T
invariance are broken; however, the theory is again CPT
invariant.

Noncommutative gauge theories seem to provide a very
good framework for the CP violating models, which are of
great importance in particle physics phenomenology. The
advantage of these theories is that the beta function is not
u dependent and futhermore u does not receive quantum
corrections. Therefore the amount of CP violation is com-
pletely under control.

I would like to thank D. Demir and Y. Farzan for fruitful
discussions. I would also like to thank D. Ployakov for
reading the manuscript. This research was partly supported
by the EC Contract No. ERBFMRX-CT 96-0090.

Appendix: Some useful identities in �-product calcu-
lus.—Let f, g be two arbitrary functions on noncommu-
tative Rd :

f�x� �
Z

f�k�eik?x ddk, g�x� �
Z

g�k�eik?x ddk .
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Then

�f � g� �x� �
Z

f�k�g�l�e2ikul�2ei�k1l�?x ddk ddl ,

where kul � kmumnln . From the above relation it is
straightforward to see: (1) g � f � f � gju!2u , and
hence �f, g�M.B. � f � gju 2 f � gj2u . (2)

R
�f � g� 3

�x� ddx �
R

�g � f� �x� ddx �
R

fg�x� ddx. (3) If we de-
note complex conjugation by c.c., then �f � g�c.c. �
gc.c. � fc.c.. If h is another arbitrary function:
(4) �f � g� � h � f � �g � h� � f � g � h. (5)

R
�f �

g � h� �x� ddx �
R

�h � f � g� �x� ddx �
R

�g � h � f� 3
�x� ddx. (6) �f � g � h� ju � �h � g � f� j2u .

In other words the integration on the space coordinates,
x, has the cyclic property, and it has all the properties of
the Tr in the matrix calculus.

From (2) we learn that the kinetic part of the actions
(which are quadratic in fields) is the same as their commu-
tative version. So the free field propagators in commutative
and noncommutative spaces are the same.
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