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Quantum Magnetic Collapse
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We study the thermodynamics of degenerate electron and charged vector boson gases in very intense
magnetic fields. In degenerate conditions of the electron gas, the pressure transverse to the magnetic
field B may vanish, leading to a transverse collapse. For W bosons an instability arises because the mag-
netization diverges at the critical field Bc � M2

W �e. If the magnetic field is self-consistently maintained,
the maximum value it can take is of the order of 2Bc�3, but in any case the system becomes unstable
and collapses.

PACS numbers: 98.80.Cq, 98.62.En
Large magnetic fields can be generated due to grav-
itational and rotational effects in stellar objects like
supernovas and neutron stars; i.e., magnetic fields of
order 1020 G and larger have been suggested to exist
in the cores of neutron stars [1]. The standard elec-
troweak theory establishes a limit on the magnetic
field, the critical upper bound for stable vacua be-
ing Bc � M2

W �e � 1.06 3 1024 G, coming from the

W6 ground state energy e0q �
q

M2
W 2 eB, which is

imaginary for B . Bc. Fields of order Bc may have
been created at the electroweak phase transition (see
[2,3]). The galactic and intergalactic magnetic fields
can be considered as relics of such huge magnetic
fields in the early Universe [4–8]. In astrophysics,
also the critical field Bc0 � m2

e�e � 4.41 3 1013 G is
relevant.

Nielsen, Olesen, and Ambjørn [9,10] showed that the
vacuum possesses the properties of a ferromagnet or an
antiscreening superconductor for B � Bc. It thus seems
relevant to study the electroweak medium in a strong mag-
netic field of the order of the critical magnetic fields. The
implications of these results for astroparticle physics and
cosmology are expected to be interesting. As in preced-
ing papers (Refs. [11,12]), we consider only the first gen-
eration of leptons and quarks for the sake of simplicity.
Here we calculate the magnetization due to the charged
leptons and intermediate vector bosons in the standard
model.
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The thermodynamic potential V � 2T lnZ involves
contributions from leptons and quarks, which are con-
sidered to be in chemical equilibrium among themselves
through the boson fields, described by equations among
their chemical potentials [11] like mW1 � mn 1 me1 ,
mdL 1 mW1 � muL , me1,W1 1 me2,W2 � 0. From the
thermodynamical potential we choose the electron and W
sectors exhibiting interesting effects in the astrophysical
and cosmological scenarios, respectively, in the pres-
ence of extremely strong magnetic fields (B � Bc0 and
B � Bc).

In the astrophysical scenario the electron-positron gas
thermodynamics is of interest. In the cosmological con-
text, we will be concerned especially with the W6 sector.

The one-loop thermodynamical potential per unit vol-
ume of the electron-positron sector is Ve � Vse 1 V0e,
where

Vse � 2
eB

4p2b

X̀
n�0

an

3
Z `

2`
dp3 ln��1 1 e2�Eq2me�b� �1 1 e2�Eq1me�b�� .

(1)

Here the sum extends over all Landau quantum num-
bers and the degeneracy factor is an � 2 2 d0n, Eq �q

p2
3 1 m2

e 1 2eBn, and b � T21. For W’s, we have
VW � VsW 1 V0W
VsW �
eB

4p2b

Z `

2`
dp3 ln��1 2 e2�e0q2mW �b� �1 2 e2�e0q1mW �b��

1
eB

4p2b

X̀
n�0

bn

Z `

2`
dp3 ln��1 2 e2�eq2mW �b� �1 2 e2�eq1mW �b�� , (2)
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where again we sum over all Landau quan-
tum numbers and the degeneracy factor is bn �

3 2 d0n, with e0q �
q

p2
3 1 M2

W 2 eB, and

eq �
q

p2
3 1 M2

W 1 2eB�n 1
1
2 �.

The Euler-Heisenberg vacuum terms are, for the elec-
tron-positron field,

V0e �
e2B2

8p2

Z `

0
e2m2

ex�eB

∑
cothx

x
2

1
x2 2

1
3

∏
dx
x

,

(3)

and for the charged gauge bosons,

V0W � 2
e2B2

16p2

Z `

0
e2M2

W x�eB

3

∑
1 1 2 cosh2x

sinhx
2

3
x

2
7x
2

∏
dx
x2 , (4)

which diverges at B . Bc, leading to a vacuum instability.
The mean density of particles minus antiparti-

cles (average charge divided by e) is given by
Ne,W � 2≠Ve,W �≠me,W . We assume that there is
always a background charge of opposite sign, to preserve
electrical neutrality. We have

Ne �
eB
4p2

X̀
0

an

∑Z `

2`
dp3�n1

e 2 n2
e �

∏
, (5)
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where n6
e � �exp�Eq 7 me�b 1 1�21.

In the degenerate limit one gets Ne �
eB
2p2

Pnm

0 an

p
m2

e 2 m2 2 2eBn, where the integer
nm � I��m2

e 2 m2��2eB�.
For W ,

NW �
eB
4p2

∑Z `

2`
dp3�n1

0p 2 n2
0p�

∏

1
eB
4p2

X̀
0

bn

∑Z `

2`
dp3�n1

p 2 n2
p �

∏
(6)

with n6
0p � �exp�e0q 7 mW �b 2 1�21, n6

p � �exp�eq 7

mW �b 2 1�21.
The magnetization is given by the contribution

of electrons and charged vector bosons. It de-
pends on the density of particles plus antiparti-
cles, and it is MW ,e � 2≠VW ,e�≠B, where (calling
M0e,0W � 2≠V0e,0W �≠B)

Me � 2
Vse

B
2

e
4p2

X̀
0

an

∑Z `

2`
dp3

eBn
Eq

�n1
e 1 n2

e �
∏

1 M0e , (7)

and in the degenerate limit [12],
Me �
e

4p2

nmX
0

an

µ
me

q
m2

e 2 m2 2 2eBn 2 �m2 1 4eBn� ln
me 1

p
m2

e 2 m2 2 2eBn
p

m2 1 2eBn

∂
1 M0e , (8)
and

MW � 2
VW

B
1

e2B
8p2

∑Z `

2`

dp3

e0
q

�n1
0p 1 n2

0p�
∏

2
e2B
4p2

X̀
0

bn

µ
n 1

1
2

∂ ∑Z `

2`

dp3

eq
�n1

p 1 n2
p �

∏
1 M0W . (9)

It is now especially interesting to discuss the equation
of state of the system. The total energy-momentum ten-
sor, whose spatial diagonal components are the pressures
along the coordinate axes, may be obtained by starting
from the quantum statistical average Tmn � �Tmn	s, where
Tmn � ≠L

≠Aa
m,n

Aa
m,n 2 dmnL [13]. If L is the total La-

grangian, after doing the statistical average, its place in
the energy-momentum tensor is taken by V (since V �

2b21 ln�e
Rb

0
dx4

R
d3x L �x4,x�	s). In the present SU�2� 3

U�1� model, the only nonzero averaged components of the
field tensor are those of the U(1) external magnetic field
tensor Fmr and then,

Tmn � �T≠V�≠T 1 me≠V�≠me 1 mW≠V�≠mW �d4mdn4

1 4FmrFnr≠V�≠F2 2 dmnV . (10)
For Fmr � 0, (10) reproduces the usual zero field case
[13]. For the electrically charged particles, we obtain thus
different equations of state for directions parallel and per-
pendicular to the magnetic field,

p3 � 2V, p� � 2V 2 BM . (11)

This anisotropy in the pressures p3, p� leads to a magne-
tostriction effect in the quantum magnetized gas of charged
particles. If (10) is taken as the Maxwell stress ten-
sor (classical case), M , 0 and p� . p3, which pro-
duces a flattening effect in white dwarfs and neutron star
models [14,15]. In the present quantum case, for diamag-
netic media also M , 0 leading again to a flattening ef-
fect. But for positive magnetization, the transverse pres-
sure exerted by the charged particles is smaller than the
longitudinal one by the amount BM . The extreme case is
found for magnetic fields, eB ¿ T2, when the electrons
are confined to the Landau ground state n � 0. (In what
follows we will ignore the vacuum contribution to elec-
tron-positron pressure and magnetization, which is justi-
fied at the scale of densities and fields considered below.)
We have Ve � 2BMe, where

Me �
e

2p2

µ
me

q
m2

e 2 m2 2 m2 ln
me 1

p
m2

e 2 m2

m

∂
(12)
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and me �
p

�2p2Ne�eB�2 1 m2, Ne being the electron
density. As m2

e . m2, the expression (12) is always posi-
tive the system behaves as paramagnetic or ferromagnetic.
But one of the most important effects we have in this limit
is that the transverse pressure can vanish,

p� � 2Ve 2 BMe � 0 . (13)

(This is the lower bound for the pressure. For fermions,
the pressure cannot be negative.) The effect (13) is of
pure quantum origin and it is easy to understand since all
electrons are confined to the Landau ground state, and the
quantum average of their transverse momentum vanishes.
If we consider a white dwarf star in which the predominat-
ing contribution to the pressure is from the electron gas,
the vanishing of p� means that the gravitational pressure
(of order GM2�R4, where R is the geometric average ra-
dius of the star) cannot be compensated and an instability
appears leading to a transverse collapse; i.e., the resulting
object (a neutron star or a black hole) would be ellipsoidal,
in this case stretched along the direction of the magnetic
field, as a cigar. It is interesting to find the critical con-
ditions for the occurrence of this confinement to the state
n � 0, and in consequence, for the collapse. We have

nm � I

µ
m2

e 2 m2

2eB

∂
�

2p4N2
e

e3B3 � 4.75 3 10220 N2
e

B3 ,

(14)

and the condition I�x� , 1 might be satisfied in some
astrophysical conditions. For example, for Ne � 1030,
B � 3.36 3 1013 G, it is enough that B * Bc0 to satisfy it.
For densities of the order of neutron stars, where a back-
ground of electrons and protons exist, if Ne � 1039, the
previous condition, if valid, would lead to B . 1019 G.

The W population in the Landau ground state is sig-

nificant if d �
q

M2
W 2 eB # T . In the degenerate limit,

e.g., for
q

M2
W 1 eB�T ¿ 1, one can neglect the contri-

bution from excited Landau states and by taking only the
n � 0 term in (9), one can approximate the first two terms,
since the main contribution to the integrals comes from
very small momenta,

MW � 2
eT
4p

q
d2 2 m

2
W 1

eBT
4p

1q
d2 2 m

2
W

1 M0W .

(15)

The first term is the diamagnetic contribution which van-
ishes as T ! 0. The third is the vacuum contribution,
which is asymptotically

M0W � 2
2V0

B
2

eM2
W

16p2 ln�M2
W �eB 2 1� ,

whose most important term is the second one which
contributes paramagnetically or ferromagnetically for
B . M2�2e, having a logarithmic divergence as B ! Bc.
As the logarithm is negative for Bc�2 , B # Bc, that term
has a negative contribution to the transverse pressure of
vacuum for fields in that interval. The first term of M0W

contributes diamagnetically, but for B ! Bc the dominant
term in (15) is the second, which is also paramagnetic
or ferromagnetic, having a stronger divergence (inverse
square root) than the vacuum term. To have a more
explicit form for (15), one must write mW in terms of
the charge density. When confined to the Landau ground
state the charge density of the system may be approxi-

mated as NW � eBTmW �2p

q
d2 2 m

2
W , from which

m
2
W � d2��1 1

e2B2T 2

4p2N2
W

�, and

MW � 2
e2T 2Bd

4p
p

4p2N2 1 e2B2T2
1

e2BT
4pd

s
1 1

4p2N2

e2B2T2

1 M0W . (16)

Taking N $ 1039, T � 1028 ergs, and B # Bc, one can
neglect the unity in the square root and contributions from
the first diamagnetic term in (15) and from M0, and one
is left with

MW �
eNW

2d
. (17)

The most important consequence is that the contribution
of this magnetization to the transverse pressure of the W
gas would be negative [see (9)], and if MWB contributes
more than the pressure of other species (the partial pres-
sure p3 � VW even decreases as B ! Bc), an instability
occurs since the total pressure would be negative. Thus,
for stability (also to prevent W decay), we must assume
some background able to keep the total pressure p� $ 0.

Some sort of Bose-Einstein condensation actually takes
place [16] for bosons. For small momentum and magnetic
fields strong enough B � Bc, the term 1�d dominates and
the main contribution to the W propagator comes from the
low momentum gauge bosons [12,16].

In the absence of a magnetic field, the quantum degen-
eracy of the W-boson sector leads to condensation, which
at T � 0 has been estimated [17] to occur induced by
neutrino densities of order ncn � M3

W �6p2 � 1045 cm23.
At any temperature, a spontaneous magnetization would
appear in the condensate of charged bosons, say W1, even
at zero external field H � B 2 4pM � 0. This sponta-
neous magnetization could self-consistently maintain the
microscopic field B � 4pMe,W .

Let us assume the magnetization large enough to main-
tain the internal field B self-consistently and very large
densities, such that me ¿ m. The dominant term in (9)
is (17) �eNW �2d. At B � Bc G, we obtain that the
self-consistent critical field is reached at an electron den-
sity �1048 electrons�cm3.

At such field intensities MW diverges, but if we write
the self-consistency condition for the W sector, we have

B � 4pM � 2p
eNW

d
. (18)
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Let us write eB � x2M2
W and since 0 # x # 1, we easily

get

x2
p

1 2 x2 �
2pe2NW

M3
W

� A . (19)

Equation (19) has no real solution for A . A1 �
2
p

3�9, corresponding to NW � 1048 cm23, and two
solutions for A , A1. For one solution, B increases with
NW up to B � 2Bc�3; for the other, B decreases as a
function of NW from the value Bc at NW � 0. This
indicates that the expression for the magnetization must
include the contribution from Landau states other than
the ground state, which leads to a diamagnetic response
to the field. This would compensate the increase of the
self-consistent field with increasing NW to keep B , Bc.

This can be shown to occur from formula (9). If we call
the ground state density NWg and the density in other Lan-
dau states NWn (NW � NWg 1

P
NWn), for B . 2Bc�3,

≠B�≠NWg , 0, and ≠B�≠NWn . 0 and excited Landau
states start to be populated. The condensate in the ground
state decreases in favor of the increase of the population
in excited Landau states, which starts to grow and con-
tribute diamagnetically to the total magnetization keeping
4pM � B , Bc. But for the system to react in this way,
an enormous amount of energy (and angular momentum)
would be required, of the order of, respectively, NWMW

and NW (here we neglect the running of MW ). But the
transverse collapse takes place at such densities: since
the pressure comes essentially from the fermion (electron)
background, the self-consistency condition B � 4pMe,W
leads to p3 � 2V � BMe and p� � p3 2 B�Me 1

MW � & 0 and thus the system collapses.
Let us assume that in some stage of the early universe a

very large external field H � Bc was present. If T � MW ,
as happened near and below the electroweak phase transi-
tion, using up the energy and angular momentum of the
background radiation, W6 pairs will be produced in the
energetic more favorable Landau ground state (having a
“mass” � d), and this process would be even more favored
as the magnetic field approaches Bc even for lower tem-
peratures. The magnetization M is given by an expression
similar to the second term in (9), in which the expressions
for the particle-antiparticle densities would be in equi-
librium with the electromagnetic background radiation.
This means that one must take the chemical potential as
zero (equal number of W6). Then, MW � e2BT�4p2d.
The density of particle 1 antiparticle pairs would then be
� eBT � 1048 cm23, and the microscopic field B , Bc

starts to be maintained self-consistently. We would have
the situation discussed in the previous paragraph. The pro-
cess of W pair creation in the external field would lead to a
5264
creation of order from disorder, i.e., to an effective cooling
of the subsystem considered, although due to similar rea-
sons as before, p� & 0 and the system becomes unstable
and collapses.

We conclude, first, that if a degenerate electron gas is
confined to its Landau ground state, its transverse pres-
sure vanishes. This phenomenon establishes a limit to
the magnetic fields expected to be observable in white
dwarfs, and even in neutron stars. Second, the instabil-
ity of the vacuum in magnetic fields B � Bc in a hot and
dense medium, is avoided, since the self-consistent mag-
netization prevents fields greater than 2Bc�3, although un-
der such conditions the system becomes also unstable and
collapses.
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