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For space-times with two spacelike isometries, we present infinite hierarchies of exact solutions of
the Einstein and Einstein-Maxwell equations as represented by their Ernst potentials. This hierarchy
contains three arbitrary rational functions of an auxiliary complex parameter. They are constructed using
the so-called “monodromy transform” approach and our new method for the solution of the linear sin-
gular integral equation form of the reduced Einstein equations. The solutions presented, which describe
inhomogeneous cosmological models or gravitational and electromagnetic waves and their interactions,
include a number of important known solutions as particular cases.

PACS numbers: 04.20.Jb, 04.30.–w, 04.40.Nr
A number of solution-generating techniques are known
which provide tools for the construction of vacuum and
electrovacuum solutions of Einstein’s equations for space-
times with symmetries. These methods are based on the
integrability of the symmetry reduced Einstein equations
(viz. the Ernst equations). However, most of them were
primarily designed to construct exact stationary axisym-
metric solutions for which an additional regularity condi-
tion should be satisfied on the axis. This condition does
not apply to interacting waves or cosmological models as
considered here.

Apart from the completely linearizable subcase of
Einstein-Rosen vacuum gravitational waves, the only
techniques which provide nontrivial tools for the construc-
tion of solutions for the dynamical case are the vacuum
Belinskii-Zakharov inverse-scattering method [1], the
so-called “monodromy transform” approach [2–4], and
the group-theoretical approach recently developed by
Hauser and Ernst [5]. In particular, the methods of
[1] enable the construction of soliton perturbations of
homogeneous cosmological models and some specific
solutions for wave interaction regions. For example, the
Khan-Penrose [6] or Nutku-Halil [7] solutions for the
interaction region for colliding impulsive gravitational
waves on a Minkowski background formally turn out to be
two-soliton solutions on a symmetric Kasner background.

Here we consider the monodromy transform approach
and the linear singular integral equations which arise in this
context as an alternative form of the reduced Einstein equa-
tions. We present a new method for the solution of these
equations which gives rise to infinite hierarchies of exact
solutions. Among many other solutions, these include the
particular cases mentioned above together with other soli-
ton solutions on the symmetric Kasner background and
their nonsoliton extensions.

According to methods developed in [2–4], any solution
of the Ernst equations can be constructed from the solution
of the linear singular integral equation
0031-9007�00�84(23)�5247(4)$15.00
1
pi

Z
L

�l�z

z 2 t
H �t, z �w�j, h, z � dz � 2k�t� (1)

considered here for the hyperbolic case only. The parame-
ters j, h are two real null space-time coordinates, e.g.,
�j, h� � �x 1 t, x 2 t�. These coordinates span some
local region in the neighborhood of some initial regular
space-time point P0: j � j0, h � h0, in which local so-
lutions of the reduced Einstein equations are considered.

The integration in (1) is performed along the path L on
the spectral plane w which consists of two disconnected
parts L1 and L2. In the hyperbolic case, these are chosen
as the segments of the real axis in the w plane, which
go from w � j0 to w � j, and from w � h0 to w �
h, respectively. (We choose j0 fi h0 and take j and h

sufficiently close to j0 and h0 that the segments L6 do not
overlap.)

The integral in (1) splits into two, one of which pos-
sesses a singular kernel of Cauchy type and should be
understood as a Cauchy principal value integral. The in-
tegration parameter z and a parameter t span both of the
contours L1 and L2. Sometimes it will be convenient to
introduce suffixes: z1, t1 [ L1 and z2, t2 [ L2.

In the integrand in (1), �l�z �
1
2 �lleft 2 lright�. This

represents the jump on the contour, i.e., half of the differ-
ence between left and right limit values at the point z [
L1 or z [ L2 of some “standard” function l�j, h, w�.
This function is a product of two functions l�j, h, w� �
l1�j, w�l2�h, w� given by

l1 �

s
w 2 j

w 2 j0
, l2 �

s
w 2 h

w 2 h0
, (2)

with the additional conditions l1jw�` � l2jw�` � 1.
Each of these functions is an analytic function on the whole
spectral plane w apart from the cut L1 or L2, respectively,
whose end points are the branching points of the corre-
sponding function.
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In Eq. (1), the three-dimensional complex vector func-
tion w�j, h, z � is unknown, and the right hand side k�t� is
a three-dimensional complex vector function of the spec-
tral parameter which may be taken to be

k�w� � �1, u�w�, v�w�� , (3)

where u�w� and v�w� are arbitrary functions. The kernel
of the integral in (1) is a scalar function H �t, z � given by

H �t, z � � 1 1 i�z 2 b0� �u�t� 2 uy�z ��

1 a2
0u�t�uy�z �

2 4�z 2 j0� �z 2 h0�v�t�vy�z � , (4)

where the dagger denotes complex conjugation, e.g.,
uy�w� � u�w�. The additional constants in (4) are
a0 � �j0 2 h0��2 and b0 � �j0 1 h0��2.

It is important to emphasize that the integral equation
(1), and hence the functions u�w�, v�w�, and w�j, h, w�,
need to be evaluated only on the two cuts L1 and L2

in the spectral plane. Thus all the above vector and scalar
functions of the spectral parameter are actually determined
by pairs of functions which represent their values on these
contours. For convenience we shall denote the values of
these functions on L6 by the corresponding suffixes:

�u�w�, v�w�� �

Ω
�u1�w�, v1�w��, w [ L1 ,
�u2�w�, v2�w��, w [ L2 . (5)

Thus, in (1) written in a more explicit form, we actually
have two unknown vector functions w6. For any of these
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suffixed functions we can use also an alternative definition,
for example,

w�j, h, t6� � w6�j, h, t� .

Using this notation, it is convenient to split the integral
in (1) into separate integrals over L1 and L2 and to con-
sider separately the cases t � t1 [ L1 and t � t2 [
L2. It is also convenient to denote the four scalar kernels
which appear in the integrands of (1) in the form

H �t6, z �6� � H6 �6�t, z � ,

where the functions H66�t, z � can be determined explic-
itly in terms of the four functions u6�w� and v6�w� using
(4), and (here and below) the undotted and dotted suffixes
should each be the same.

To conclude our description of the structure of the mas-
ter integral equations, we recall that the four functions
u6�w� and v6�w� appearing in (3) and (5) play a sig-
nificant role in the entire construction. They determine
completely the coefficients of the integral equations in the
electrovacuum case. In the vacuum case there are only
two such functions u6�w�, as v6�w� � 0. As shown in
[3], they characterize unambiguously every individual so-
lution of the Ernst equations. Moreover, the singular inte-
gral equation (1) possesses a unique solution for any given
choice of analytical functions u6�w� and v6�w�.

We recall now also that the general local solution of the
hyperbolic Ernst equations can be expressed by quadra-
tures in terms of the solution of (1)
E � 21 2
2
p

Z
L

�l�z �1 2 i�z 2 b0�uy�z ��w�u��j, h, z � dz ,

F �
2
p

Z
L

�l�z �1 2 i�z 2 b0�uy�z ��w�y��j, h, z � dz ,
(6)
where w�u� and w�y�, in some association with the defini-
tion (3), denote, respectively, the second and third com-
ponents of the vector solutions w of the master integral
equation (1), corresponding to a given choice of the mono-
dromy data functions u6�w� and v6�w�. In a more explicit
form, each of the integrals in (6) should be split into two
integrals evaluated over L1 and L2.

Here we will construct a class of hyperbolic solutions
that is determined by the rational monodromy data

u6�w� �
U6�w�
Q6�w�

, v6�w� �
V6�w�
Q6�w�

, (7)

where U1�w�, V1�w�, Q1�w� and U2�w�, V2�w�,
Q2�w� are arbitrary complex polynomials, provided
u1�w�, v1�w� and u2�w�, v2�w� do not have poles on
L1 and L2, respectively.

For what follows, it is convenient to calculate some
auxiliary polynomials of two variables—we introduce the
four polynomials P66�t, z � defined by the relations
H6 �6�t, z � �
P6 �6�t, z �

Q6�t�Qy
�6�z �

, (8)

and four polynomials R66�t, z � defined from them by

R6 �6�t, z � �
P6 �6�t, z � 2 P6 �6�z , z �

z 2 t
. (9)

Finally, it is convenient to introduce a redefinition of the
unknown functions

w1�z � � 2
l21

2 �z �Qy
1�z �

P11�z , z �
ew1�z � ,

w2�z � � 2
l21

1 �z �Qy
2�z �

P22�z , z �
ew2�z � .

(10)

Hereafter we do not show explicitly the arguments j and
h of w6 and l or the suffices 6 at the points z and t,
unless it is necessary.

A direct substitution of (7) into Eq. (1) with the use of
(8)–(10) leads to the following convenient form of linear
equations with polynomial right hand sides:
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1CA ,
if we impose constraints on the coefficients of the rational
functions (7) such that

P12�z , z � � P21�z , z � � 0 . (12)

This leads to a large class of explicit solutions ew6�j, h, t�
of (11) that are regular on the cuts L6. However, the
solution of the Ernst equations needs the solutions
w6�j, h, t� of (1) to be regular on the cuts L6. Fortu-
nately, all additional singularities (poles) of w1�j, h, t�
on L1 and w2�j, h, t� on L2, which arise from the
denominators in (10), can be avoided by the additional
restrictions that u1�h0� � 2i�a0 and u2�j0� � i�a0.
We therefore specify

u1�w� � 2
i

a0
1 �w 2 h0�

C1�w�
Q1�w�

,

u2�w� �
i

a0
1 �w 2 j0�

C2�w�
Q2�w�

,
(13)

where C1�w�, C2�w�, Q1�w�, and Q2�w� are arbitrary
polynomials. With these, the ansatz (12) leads to the
constraint C2�w� � B�w�Cy

1�w� 2 4iA�w�Vy
1�w� and,

for the polynomials in (7), the general solution of (12)
reads
U1�w� � 2
i

a0
Q1�w� 1 �w 2 h0�C1�w� ,

U2�w� � B�w�
µ

i
a0

Q
y
1�w� 1 �w 2 b0�Cy

1�w�
∂

2 4i�w 2 j0�A�w�Vy
1�w� ,

V2�w� � A�w� �Qy
1�w� 2 ia2

0C
y
1�w�� ,

Q2�w� � B�w� �Qy
1�w� 2 ia2

0C
y
1�w�� ,

(14)
where the polynomials A�w�, B�w�, C1�w�, V1�w�, and
Q1�w� can be chosen arbitrarily, provided the correspond-
ing functions u6�w�, v6�w� have no poles on the cuts
L1 and L2, respectively. The vacuum case, which occurs
when A�w� � V1�w� � 0 and B�w� � 1, yields simpler
expressions which involve just two arbitrary polynomials
C1�w� and Q1�w�.

Returning to (11), we note that the integral operators
in the left hand sides can be inverted using the Poincaré-
Bertrand formula [8] for singular integrals

1
pi

Z
L

�l�z

z 2 t
w�z � dz � f�t�

, w�t� �
1

pi

Z
L

�l21�z

z 2 t
f�z � dz . (15)

This can be applied to the integrals over L1 (using l1), or
over L2 (using l2).

Since the right hand sides of (11) are polynomials in t,
the inversion (15) leads to the solution in the form

ew6�t� �
N6X
k�0

0B@ eqk6euk6eyk6

1CAZk6�t� , (16)
where N1 and N2 are the maxima of the degrees of the
polynomials U1, V1, Q1 and U2, V2, Q2, respectively,euk6, eyk6, eqk6 are unknown t-independent functions of j

and h, and Zk6�t� are standard functions given by

Zk6�t� �
1

pi

Z
L6

�l21
6 �z

z 2 t
z k dz . (17)

All these functions (integrals) can be evaluated as the
residues of their integrands at z � ` are polynomials in
t of degree k.

We note now that the vector integral equation (1) de-
couples into three pairs of equations—one pair for each of
the three components of ew1 and the corresponding compo-
nent of ew2. All these pairs of equations possess the same
kernels but different right hand sides. Therefore, substi-
tuting the expressions (16) into (11) and using (9) with
(12), we get three decoupled algebraic systems, each of
order �N 1 2� 3 �N 1 2� where N � N1 1 N2 and for
the sets of unknowns eqk6, euk6, eyk6, respectively. How-
ever, in view of (6), we need the solutions of two of these
systems only,
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N11P
B�0

DABeuB � uA,

D �

√
D11 D12

D21 D22

!
, (18)N11P

B�0
DABeyB � yA,

where the indices A, B � 0, 1, . . . , N 1 1. The column
vectors uA, yA (shown below as rows) are composed of
the coefficients of the polynomials U6�z � and V6�z �:

uA � �u01, u11, . . . , uN1
, u02, u12, . . . , uN2

� ,

yA � �y01, y11, . . . , yN1
, y02, y12, . . . , yN2

� .
(19)

Similarly, we combine the coefficients euk6, eyk6 in (16) to
form the column vectors (rows)

euA�j, h� � �eu01, eu11, . . . , euN1
, eu02, eu12, . . . , euN2

� ,eyA�j, h� � �ey01, ey11, . . . , eyN1
, ey02, ey12, . . . , eyN2

� .
(20)

The matrix kDk consists of the blocks D11, D12,
D21, D22 of orders �N1 1 1� 3 �N1 1 1�,
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�N1 1 1� 3 �N2 1 1�, �N2 1 1� 3 �N1 1 1�, and
�N2 1 1� 3 �N2 1 1�, respectively. Their components
are determined by the integrals

�D11�kl�j� � dkl 1
1
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P11�z , z �
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Z h
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�D21�kl�j� �
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pi

Z j

j0

�l1�z

�R21�k�z �
P11�z , z �

Zl1�z � dz ,

�D22�kl�h� � dkl 1
1

pi

Z h

h0

�l2�z

�R22�k�z �
P22�z , z �

Zl2�z � dz ,

(21)
where �R66�k are the coefficients in the expansions
R16�t, z � �

PN1

k�0�R16�k�z �tk and R26�t, z � �PN2

k�0�R26�k�z �tk .
To calculate the final expressions for the Ernst poten-

tials, we need to evaluate the additional sets of integrals
Jk1�j� �
1

pi

Z j

j0

�l1�z

Q
y
1�z � 2 i�z 2 b0�Uy

1�z �
P11�z , z �

Zk1�z � dz ,

Jk2�h� �
1

pi

Z h

h0

�l2�z

Qy
2�z � 2 i�z 2 b0�Uy

2�z �
P22�z , z �

Zk2�z � dz ,
and to combine them into one row vector

JA � �J01, J11, . . . , JN1
, J02, J12, . . . , JN2

� . (22)

Let us also define two additional �N 1 2� 3 �N 1 2� ma-
trices

GAB � DAB 2 2iuAJB, FAB � DAB 2 2iyAJB .

(23)

All integrals determining the components of the matri-
ces GAB, FAB, and DAB can be evaluated in terms of the
residues of their integrands at the zeros of P11�w, w� and
P22�w, w� and at w � `. We then have

E � 2
det kGABk

det kDABk
, F �

det kFABk

det kDABk
, (24)

which are the final expressions for the Ernst potentials.
These solutions generally possess essentially nonlinear
properties. They are not trivial time-dependent analogs of
any stationary axisymmetric solutions with regular axis of
symmetry which have different structures of monodromy
data. The expressions (24) generally are not rational
functions of j, h.

When evaluating explicit examples, it may be noted
that solutions with a diagonal metric occur when uy

6 �
2u6. The plane symmetric (type D) Kasner metric
with E � 2a�a0 is obtained using the constants u1 �
2i�a0, u2 � i�a0, and v6 � 0. The Khan-Penrose
solution [6] for colliding plane impulsive gravitational
waves is obtained with v1�w� � v2�w� � 0 and
u1�w� � ik1

w 2 a1

w 2 b1

, u2�w� � ik2

w 2 a2

w 2 b2

(25)

when the constants a6, b6, and k6 are real. The nondiago-
nal Nutku-Halil solution [7] for noncollinear impulsive
waves is obtained from the same expression using com-
plex constants. This explicitly demonstrates that the above
method is applicable to both the linear and nonlinear cases.
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