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Rotation in an Asymmetric Multidimensional Periodic Potential due to Colored Noise
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We analyze the motion of an overdamped classical particle in a multidimensional periodic potential,
driven by an external noise. We demonstrate that in the steady state the presence of temporal correla-
tions in the noise and spatial asymmetry within a period of the potential could lead to particle rotation.
The rotation is a direct consequence of a change in the sign of the noise-induced drift motion in each
dimension. By choosing different potentials, we can generate a variety of flow patterns from laminar
drifts to rotations.

PACS numbers: 05.10.Gg, 05.40.–a, 87.10.+e
Recently there has been intense activity in the analysis
of stochastically driven ratchets [1,2]. These ratchets are
spatially periodic systems where a spatial asymmetry in the
potential imposes a directionality, while “memory” effects
from a temporally correlated stochastic force (colored
noise) or explicit time dependences in the potential itself
break detailed balance, thereby rectifying microscopic
fluctuations to generate a unidirectional particle drift. This
type of unidirectional drift has been verified through ex-
periments on colloidal particles or polystyrene spheres
[3,4], cold rubidium atoms in an asymmetric optical lat-
tice [5], and quantum dots [6]. Predictions have also been
made for SQUIDs [7]. The applications of these concepts
have been manifold: this mechanism has been proposed as
a possible explanation for the long-range cellular transport
of motor proteins, utilizing temporal fluctuations at a
microscopic scale to effectively transduce chemical energy
into directed mechanical work [8]. In addition, such ideas
are of interest in the nanoscale fabrication of devices.

Most recent analyses of ratchets have been limited to
one-dimensional (or “linear”) molecular motors [8]. In this
paper we show that for a particle in a multidimensional po-
tential a time-correlated noise can break detailed balance
and generate rotations. Beyond their intrinsic interest and
novelty, such rotations could be used to design nonequi-
librium molecular engines. To demonstrate rotations, we
develop a Fokker-Planck equation in arbitrary dimensions
for a weakly correlated Gaussian random noise and explic-
itly demonstrate the existence of rotation in the presence
of spatial asymmetry and temporal correlations. Our argu-
ment can be simply described as follows: in the presence
of spatial asymmetry in one dimension, a time-correlated
noise is known to produce a drift [1,2]; the direction of the
drift is determined by the sense of the potential asymmetry.
For a potential in multiple dimensions, the sense of the po-
tential asymmetry along one coordinate can be reversed by
varying the other coordinates, leading to a change in sign
(or reversal of asymmetry) of the potential. As indicated
in Fig. 1, the coordinate-dependent reversal of the one-
dimensional drifts could then conspire together to gener-
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ate a rotation. Contrary to rotation generated in a potential,
determined by the system’s initial conditions, the sense of
our rotation is given entirely by the potential asymmetry
and is independent of any initial conditions. Furthermore,
removing either the potential asymmetry or the correlation
in the noise destroys the rotation.

We put our general argument outlined above in a mathe-
matical form as follows. We start with a Langevin equa-
tion describing an overdamped particle driven by a colored
Gaussian noise of arbitrary correlation function in an ar-
bitrary multidimensional periodic potential. For small cor-
relation time, we derive a Fokker-Planck equation for the
probability density of the particle. We then show that in
steady state the curl of the current density cannot be zero
everywhere in space as long as the correlation time is non-
zero and the periodic potential is asymmetric. Finally we
demonstrate that relaxing either of these two conditions
leads to zero current density.

FIG. 1. Schematic description of rotation over one unit cell of
a two-dimensional periodic potential, caused by spatial asym-
metry and temporal correlations. One-dimensional drifts are
produced by asymmetric potentials in x and y, in conjunction
with correlated noise. The drifts switch directions owing to
coordinate-dependent changes in overall sign of the potential
asymmetry, and together produce rotation.
© 2000 The American Physical Society 5243



VOLUME 84, NUMBER 23 P H Y S I C A L R E V I E W L E T T E R S 5 JUNE 2000
The Langevin equation describing the dynamics of an
overdamped particle (damping coefficient g set to unity)
in a multidimensional space �r in the presence of a potential
U��r� and a noise �f�t� is given by [9]

��r�t� � �W��r� 1 �f�t� , (1)

where the overdot represents a time derivative and �W �
2 �=U��r� is the force exerted by the potential U��r�. The
noise is assumed to be Gaussian distributed, with a cor-
relation time t

c
i and strength Di along the ith coordinate.

Generalizing Fox’s functional calculus approach [10], we
express the probability distribution P��r� in terms of a func-
tional integral over different realizations of the noise. The
noise in a particular direction i is temporally correlated
through a correlation function Ci , while being uncorrelated
with other directions j fi i:
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N is a normalization constant for P, and the subscripts i, j
correspond to different spatial components of the multidi-
mensional vectors.

The above representation of the probability distribution
allows us to write down the equation of motion for the
probability distribution P��r� which implicitly depends on
time through its coordinate and the Langevin equation (1).
The equation takes the form of a continuity equation �P �
2 �= ? �J. In the limit of weakly colored noise, the correla-
tion time t

c
i is much smaller than the diffusion time t

D
i �

L2
i �Di over one period Li of the potential, and the time

t
g
i � L2

i �U0 for an overdamped particle to fall from a po-
tential U0. Under these conditions, the current density �J
satisfies the Fokker-Planck form [11]
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where the matrix elements Mij � ≠Wi�≠rj , Rij �P
k Wk≠2Wi�≠rj≠rk , and m

i
1 and m

i
2 are the first and

second moments, respectively, of the correlation function
Ci [11]. The role of color is thus to make the effective dif-
fusion coefficient Qi position dependent in a well-defined
manner [i.e., a function only of the potential U��r�].

We solve Eq. (3) for �J in steady state ( �P � 0) and im-
pose periodicity on P. In conjunction with the periodicity
for U, this gives us a set of integral equations for �J. In
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particular, in two dimensions, these read
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where Lx,y are the periods along x and y directions, re-
spectively, and the coordinate zero is an arbitrary reference
point on the x-y plane.

Simplifying Eq. (4) elucidates the role of the correla-
tion and the asymmetry terms, which sit on the right-
hand side. Expanding the square brackets to the right to
the first significant order in t
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and an analogous equation for fy�x, Ly�. This term is
nonvanishing as long as the noise is correlated (tc

i fi 0)
and the potential in two dimensions is asymmetric, i.e., the
integral over one period [Eq. (5)] is nonzero even though
the integrand itself is periodic [12].

The origin of rotation can now be traced to the existence
of color and asymmetry, which makes the integral in (5)
and thus the right-hand side of Eq. (4) nonzero. This pre-
vents �J from being identically zero or constant. Now, in
steady state the divergence of �J is zero, so the only way for
�J to not be identically zero within periodic boundary con-
ditions is to have the curl of �J not identically zero. This
necessitates the current density to have local rotational
fluxes. On the other hand, if we take the limit of white
noise (tc

i � 0, ; i) or make the integral in Eq. (5) van-
ish (symmetric potential), the right-hand side of Eq. (4) is
zero, and then �J can have zero curl. In fact, we can make
the statement stronger: for white noise, the effective dif-
fusion constant Qi � Di is position independent. In that
case, the Fokker-Planck equation and the steady state lead
to the following set of equations:

�= ? �J � 0 ,

�= 3 � �JeU��r��D� � 0 .
(6)
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These equations, with periodic boundary conditions and
detailed balance, lead to �J � 0 [9] which corresponds to
an equilibrium Maxwell-Boltzmann distribution for the
probability distribution P 
 exp�2U�D�. In other words,
in white noise in steady state, there is no current density
whatsoever. The damping in Eq. (1) breaks time-reversal
symmetry in the system, while color breaks detailed bal-
ance, producing rotations.

Having thus established the necessary existence of
rotational fluxes in a colored noise, we now move on to
a concrete example for an asymmetric potential in two
dimensions as shown in Fig. 2. The parameter a is the
measure of the potential asymmetry. This potential is
identical with respect to the transformation x $ y. We
choose our correlation function for both the x and y
variables to be decaying exponentials in time and assume
in addition t

c
i � tc and Di � D to remove any superfi-

cial differences between the x and y directions.
We fix the boundary conditions of our potential by fix-

ing P�0, y� � P�x, 0� � const for the sake of definiteness.
For a particular instantiation of our general arguments for
nonzero rotation, we make an ansatz at this stage: we as-
sume that Jx is a function of y only and Jy is a function
of x. This ansatz is consistent with the form of Eq. (4)
and trivially satisfies the steady-state condition �= ? �J � 0.
Then Jx� y� is proportional to fx�Lx , y� of Eq. (5) divided
by

RLx

0 dx exp�2fx�x, y��, with an analogous equation for
Jy�x�. For the potential in Fig. 2, Eq. (5) simplifies to
fx�Lx , y� � 23�tc�2U3

0ap�4 sin2y 1 sin4y��4D.
Figure 3 shows the resulting field plot for the current

density �J over one period of the potential. One immedi-
ately sees local rotational fluxes separated by saddle points.
There are drifts along x for fixed y which change sign as
described schematically in Fig. 1 and produce a local ro-
tational flux. The role of spatial asymmetry and tempo-
ral correlation is clear by inspection of the expression for
fx�Lx , y�; the current density �J is zero if we set either tc

FIG. 2. Two-dimensional contour plot of a potential with trans-
lational asymmetry in x and y. The potential chosen is given
by U�x, y� � U0�sinx siny 2 a sin2x sin2y� with U0 � a � 1.
Dark areas correspond to valleys and bright patches correspond
to hills in the potential landscape.
or a to be zero. In other words, the correlated noise breaks
detailed balance, thereby exploiting the spatial asymme-
tries in the potential to produce local drifts and rotations.

The relation between the potential profile in Fig. 2 and
the flow pattern in Fig. 3 can be summarized as follows:
for a fixed x ( y) coordinate, the sense of the drift along
y (x) is given by the asymmetry integral in Eq. (5). Note
that the rotations take the particle in and out of potential
hills and valleys, implying that energy is not conserved in
the rotation process. The particle does not follow any of
the equipotentials; neither does the direction of the rota-
tion depend on the initial conditions of the system. The
noise-driven rotation is a nonequilibrium process which
disobeys the fluctuation-dissipation theorem, and the sense
of the rotation is determined entirely by the moments of the
correlation function and potential asymmetries.

Varying the potential leads to a whole range of steady-
state flow patterns, including laminar flow (global drift),
global rotation (over one unit cell of the potential), and
their various combinations. To get a drift in any one co-
ordinate, for example, we need an asymmetric potential
(such as a ratchet) in that direction. Combining asymmet-
ric potentials in various ways, we can generate the follow-
ing classes of noise-driven fluxes [11]:

Flow pattern Potential form

Rotation Ratchets coupled in x and y
Laminar flow Decoupled ratchets in x and y

Rotation 1 net drift Coupled ratchets asymmetric
under x $ 2x, y $ 2y

Our arguments are generalizable to higher dimensions;
breaking other kinds of symmetries in N dimensions will
lead to a complex network of flow patterns.

FIG. 3. Local rotations ( �J) produced by drifts arising out of
translational asymmetries in the potential in Fig. 2 and correla-
tion in the noise. There is no global rotation, and the steady-state
flow consists only of cycles and saddle points. At fixed values of
x there are global drifts in y that reverse sign so as to generate the
rotations. The arrow lengths are proportional to �tc�2U3

0 a�D,
so that as a or tc ! 0 the arrow length shrinks to zero and the
local current densities vanish.
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The broken detailed balance and spatial asymmetry es-
sential for current generation could be introduced in a va-
riety of ways; we have considered correlated noise and
asymmetry in the potential. One could obtain similar re-
sults by introducing both spatial asymmetry and temporal
correlation in the potential, leading to currents in a “flash-
ing potential” [2]. On the other hand, one could include
both of these in the noise itself and leave the potential sym-
metric with respect to x and y individually. This can be
accomplished, for example, by a noise that has more kicks
on average in one direction than the other, thereby incorpo-
rating both broken spatial symmetry and detailed balance
[13]. In essence, the noise has to be out of equilibrium
with the system to produce current [14].

One-dimensional ratchets have been explored under a
variety of experimental conditions [3–5]. To observe
noise-induced rotation in higher dimensions, we now pro-
pose a realistic experimental setup. Consider a system
of 0.07 0.1 mm charged, fluorescent polystyrene beads
suspended in an aqueous solution at room temperature in
a two-dimensional potential. The periods of the poten-
tial are chosen to be Lx � Ly 	 1 mm, with an asym-
metry fraction 
0.4 and maximum energy U0 	 75 meV.
A set of crisscrossing electrodes is lithographically pat-
terned to generate the two-dimensional ratchet potential
similar to the one-dimensional potential in Ref. [3]. Al-
ternatively we can build a ratchet optically as in Ref. [4],
for example, by passing a low intensity laser light through
a patterned reticle. For a colored noise with a 10–40 Hz
bandwidth generated electronically or optically, the par-
ticles will settle into slow circular orbits of 
1 mm diam.
Our calculations give us an estimated period of rotation of
1–10 h [11]. Such fluorescent vortex patterns should be
observable using a microscope.

We have analyzed the steady-state dynamics of an over-
damped classical particle in an arbitrary multidimensional
potential driven by a noise with an arbitrary correlation
function. For nonzero temporal correlations and asymme-
tries in the potential, current production in terms of rota-
tions and drifts is expected. We have demonstrated rotation
explicitly in two dimensions in the limit of small correla-
tion times. Such rotations could be prototypes of periodic
nonequilibrium processes such as molecular engines. By
suitably tailoring the potential, one can generate a host
of nonequilibrium flow patterns of the particle, including
global drifts and rotations in combination. We have pro-
posed a way of monitoring rotations in a realistic experi-
mental setup.
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