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Essential Nonlinearities in Hearing
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Our hearing organ, the cochlea, evidently poises itself at a Hopf bifurcation to maximize tuning and
amplification. We show that in this condition several effects are expected to be generic: compression
of the dynamic range, infinitely sharp tuning at zero input, and generation of combination tones. These
effects are “essentially” nonlinear in that they become more marked the smaller the forcing: there is
no audible sound soft enough not to evoke them. All the well-documented nonlinear aspects of hearing
therefore appear to be consequences of the same underlying mechanism.

PACS numbers: 87.19.Dd, 05.45.–a, 43.66.+y, 87.17.Nn
The classic Helmholtz theory [1] posits that our hear-
ing organ, the cochlea, is arranged like a harp or the back
plane of a piano, with a number of highly tuned elements
arrayed along a frequency scale, performing Fourier analy-
sis of the incoming sound. Although the notion that the in-
ner ear works like a musical instrument offers a beautiful
esthetic symmetry, it has serious flaws. In the 1940s, Gold
[2] pointed out that the cochlea’s narrow passageways are
filled with fluid, which dampens any hope of simple me-
chanical tuning. He argued that the ear cannot operate as a
passive sensor, but that additional energy must be put into
the system. As in the operation of a regenerative receiver
[3], active amplification of the signal can compensate for
damping in order to provide highly tuned responses.

von Békésy’s classic measurements in the cochlea [4]
demonstrated the mapping of sound frequencies to posi-
tions along the cochlea. He observed the tuning to be quite
shallow and found cochlear responses to behave linearly
over the range of physiologically relevant sound intensi-
ties. Gold’s notions were largely set aside in favor of the
hypothesis of coarse mechanical tuning followed by a “sec-
ond filter,” whose nature was surmised to be electrical.

von Békésy conducted his measurements on cadavers,
whose dead cochleas lacked power sources or amplifiers
that might have provided positive feedback. Only fairly re-
cently, laser-interferometric velocimetry performed on live
and reasonably intact cochleas has led to a very different
picture [5,6]. There is, in fact, sharp mechanical tuning,
but it is essentially nonlinear: there is no audible sound
soft enough that the cochlear response is linear. Although
the response far from the resonance’s center is linear, at the
resonance’s peak the response rises sublinearly, compress-
ing almost 80 dB into about 20 dB (Fig. 1). The width of
the resonance increases with increasing amplitude, being
least for sounds near the threshold of hearing. Observa-
tion of the response’s essential nonlinearity at the level of
cochlear mechanics contradicts von Békésy’s finding. Fur-
thermore, this nonlinearity does not originate in the rigid-
ity of membranes or in fluid-mechanical effects. Because
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it reversibly disappears if the cochlea’s ionic gradient is
temporarily disturbed, the nonlinearity depends on a bio-
logical power supply [7].

Gold conjectured that a regenerative mechanism for
hearing could lead to feedback oscillations so that the
ear would actually emit sound. The discovery that the
ear indeed produces spontaneous otoacoustic emissions
[8] rekindled interest in Gold’s theory. Recently these
emissions have been found to be limit-cycle oscillations
[9]. The perceived pitch of missing fundamental tones
has additionally been shown to be compatible with a
relaxation oscillation locking mechanism [10].

FIG. 1. Laser velocimetric data from a living chinchilla’s
cochlea displaying the root-mean-square velocity of one point
on the basilar membrane as a function of driving frequency.
Each curve represents a different level of stimulation, labeled in
decibels sound-pressure level. The characteristic frequency at
the position of measurement is 9 kHz. Notice that at 4 kHz, the
curves from 40 to 80 dB span two decades (40 dB), whereas at
9 kHz the curves from 3 to 80 dB span just under one decade
(20 dB). Note that the response at 9 kHz saturates beyond
60 dB. At 4 kHz, the response rises an average of 1 dB per
decibel, whereas at 9 kHz the response rises only 0.3 dB per
decibel. Note furthermore the dramatic increase in bandwidth
as the intensity increases. Courtesy of Ruggero [5].
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Psychoacoustical experiments have provided another
means of probing the nonlinearities of hearing. When two
sine waves traverse a system with a nonlinear transfer
function, the response includes combination tones, integer
linear combinations of the input frequencies, whose
amplitudes scale as products of the input amplitudes
raised to the appropriate positive integer powers. If the
input is weak enough, a linear “small-amplitude” regime
should be recovered in which combination tones are
absent. Psychoacoustical experiments showed that the
perceived intensity of combination tones is not suppressed
in this fashion: although the 2f1 2 f2 combination tone
should decline by 3 dB for each decibel of attenuation in
the input sound, the actual attenuation is only 1 dB per
decibel [11]. The intensity relative to the fundamental
tones remains constant. These observations, too, imply
that the system is essentially nonlinear: no audible
sound is faint enough to elicit a small-amplitude, linear
regime.

We shall show that all of these apparently disparate char-
acteristics are related to one another, stemming from the
same mechanism. In dynamical systems language, we
would say that Gold’s theory asserts that the elements of
the hearing organ somehow poise themselves at a Hopf bi-
furcation, like a sound technician adjusting the volume at
an amplifier to the loudest possible setting before feedback
oscillation ensues. We shall show that at a Hopf bifurcation
we generically expect essential nonlinearities, compression
of dynamic range, sharp tuning for small input, and broad
tuning for large input. In essence, several nonlinear aspects
of hearing may stem from the Hopf bifurcation. We shall
then argue that given our current understanding of hair-cell
physiology it is plausible that this is occurring.

A generic equation describing a Hopf bifurcation can be
written

�z � �m 1 iv0�z 2 jzj2z ,

where z�t� is a complex variable of time, v0 is the natural
frequency of oscillation, and m is the control parame-
ter. When m becomes positive, the solution z � 0
becomes unstable, and a stable oscillatory solution ap-
pears, z �

p
m exp�iv0t�. If the system is subjected to

periodic forcing as �z � �m 1 iv0�z 2 jzj2z 1 Feivt ,
then for the spontaneously oscillating system a variety of
well-studied entrainment behaviors occur. Assuming a 1:1
locked solution of the form z � Reivt1if, we obtain

F2 � R6 2 2mR4 1 �m2 1 �v 2 v0�2�R2. (1)

This equation is a cubic in R2 and hence solvable:

3R2 � S1�3 1 2m 2 U2S21�3,

where

2S � D 1

q
D2 1 4U3

2 ,

D � 27F2 1 16m3 2 18mU1 ,
U1 � m2 1 �v0 2 v�2,

U2 � 2m2 1 3�v0 2 v�2.

If we specialize Eq. (1) exactly at the bifurcation we
obtain

F2 � R6 1 �v 2 v0�2R2 (2)

from which we can demonstrate directly one of our main
contentions. At the center of the resonance, where v �
v0, R � F1�3, so no matter how small F might be, the
response is nonlinear (Fig. 2). Notice that because a cubic
root of a small number is much larger than the number, the
amplification R�F or the differential amplification dR�dF
blows up as F22�3 for infinitesimal forcings. Away from
the resonance’s center, for sufficiently small F we obtain
R � F�jv 2 v0j, the standard form for a single pole seen
from a distance; for any v, the amplification is constant
and independent of F.

The definitions of “near the resonance” and “far from
the resonance” depend on the amplitude of the forcing;
therefore the interface between the two regimes depends
on F. If we define the half-width G of the resonance
as the range in v for which R falls by one-half (Fig. 3),
�R�2�6 1 G2�R�2�2 � R6, from which

G �
3
p

7
4

F2�3. (3)

For this system the gain-bandwidth product is constant and
independent of the forcing. The gain-bandwidth balance
depends strongly on the forcing amplitude, however,
asymptoting to infinite gain and zero bandwidth for zero
forcing amplitude. This behavior strikingly resembles
that of the velocimetric data for the basilar-membrane
response [5].

As noted, if the control parameter lies exactly at the
Hopf bifurcation, there is no forcing soft enough not to
elicit a nonlinear response. This is no longer true if the
parameter is not poised exactly at the bifurcation. Near
the bifurcation, there is a linear regime for soft enough
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FIG. 2. Hopf resonance. The response R to different levels
of forcing F is obtained from Eq. (2); the amplitude of forcing
increases in increments of 10 dB for successive curves from
bottom to top. At resonance the response increases as the one-
third power of the forcing, whereas away from the resonance
the response is linear in the forcing.
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FIG. 3. The resonance of Fig. 2 in log-log form shows the
compressive regime (to the upper left) and the linear regime (to
the lower right) and the boundary between them. The dashed
line given by Eq. (3) indicates the half-width G.

sounds; how soft they need to be depends upon closeness
to the bifurcation. The precision with which the system
can be so poised determines the maximal amplification
and frequency selectivity. We again specialize Eq. (1),
this time to the case v � v0, exactly at resonance, to get

F2 � R2�R2 2 m�2. (4)

Consider first m , 0, the sub-bifurcation regime. As F !
0 then R ! 2F�m: the amplification for infinitesimally
soft sounds is 21�m, which becomes infinite only exactly
at the transition. For m sufficiently small and negative we
observe compressive nonlinearity for F . �2m�2�3 and a
linear regime for softer sounds. We should furthermore
note that for Eq. (1), m is also the parameter for exponen-
tial relaxation in the absence of forcing: the system relaxes
to the quiescent state as exp�mt�. Thus the linear-regime
amplification is exactly proportional to the integration time
given by this relaxation; this integration time becomes in-
finite exactly at the bifurcation. Cochlear velocimetry data
show the response becoming linear again below the hear-
ing threshold [6]; this observation raises the possibility that
the feedback loop controlling the poising operates through
the very same signal used for detection.

Once past the Hopf bifurcation (m . 0), an oscillation
occurs, for which the response above the limit-cycle ampli-
tude is R0 � R 2

p
m. Equation (4) has three solutions,

of which only one (R0 . 0) is stable with stability parame-
ter 2m. In the suprabifurcation regime the solution above
is by definition phase-locked 1:1, so its stability is con-
strained to the 1:1 Arnold tongue. In order to fully explore
the behavior of the system around the Hopf bifurcation, it
is better to consider the simplest forced model able to suf-
fer quasiperiodic transitions. The best numerical scheme
is to define a system whose solution we can compute ana-
lytically, then to force it impulsively so that we obtain a
closed-form iterated map [12,13]. The simplest such ho-
mogeneous oscillator is

�r � r�m 2 r2� , (5)

�u � v . (6)

Numerical exploration of this and similar models shows
5234
that the features described above are independent of model
details [V. M. Eguíluz (to be published)].

We have thus established that several nonlinear aspects
of hearing are compatible with the idea that the cochlea
poises itself at a Hopf transition. How might this behavior
originate in the hearing organ? One possibility is that
the response dynamics of individual sound-sensing ele-
ments— the hair cells of the inner ear— itself displays a
Hopf bifurcation. We shall next examine physiological evi-
dence in support of this proposition.

Individual hair cells show electrical frequency selec-
tivity, being tuned to specific frequencies by resonance
of the membrane potential [14]. A seven-dimensional
conductance-based model describes the hair cell’s elec-
trical amplifier, called the membrane oscillator [15]. In
this model, the hair cell’s capacitance is charged by cur-
rent through the transduction channels, then discharged by
Ca21-activated K1 current. The model’s control parame-
ter m is a strong function of both the transduction and
the Ca21 conductances. As described by the membrane-
oscillator model with increased m, electrically resonant
hair cells in the hearing organs of amphibians, reptiles,
and birds operate near a supercritical Hopf bifurcation. A
small conductance oscillation in the transduction channels
engenders a large current-to-voltage gain, the benefit of
operating near a Hopf bifurcation [M. Ospeck et al. (to be
published)].

In lower vertebrates, frequency-specific amplification in
the auditory system derives in part from mechanical prop-
erties of the hair bundle, the mechanoreceptive organelle
of the inner ear [16]. This bundle does not behave as a
merely passive transducer. Evoked hair-bundle oscilla-
tions instead demonstrate that the hair bundle is capable
of producing active transient motions and of amplifying
mechanical inputs [17–20]. Moreover, hair bundles can
produce limit-cycle oscillations, a phenomenon that may
underly otoacoustic emissions [21]. Finally, a hair bundle
can generate combination tones similar to those found in
psychoacoustical experiments [22].

Two suggestions have been made about the mechanism
of hair-bundle oscillations [16]. Both posit that the
force-generating elements regulate the elastic properties
of the mechanoelectrical transduction channel in a Ca21-
dependent manner, thus modulating tension in the associ-
ated gating spring and altering the mechanics of the hair
bundle. One possibility is that myosin molecules anchor-
ing the channel complex to the actin core of the stereocilia
power the oscillations. The alternative proposal is that the
channel complex itself is intrinsically active and generates
force. The primary supposition of this model [23] is
that the closed state of the channel is stabilized by Ca21

binding. Because there is a Ca21 concentration gradient
across the cell membrane and the channel is permeable
to Ca21, channel opening regulates the local intracellular
Ca21 concentration and thus the force generated through
channel reclosure.
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Variation of the model’s parameter values through a
physiologically plausible range reveals a locus of Hopf
bifurcations whose frequencies span the range of human
hearing. Near the bifurcation, one observes compressive
frequency selectivity; the system is essentially nonlinear.
One particularly relevant control parameter is the number
of stereocilia in the hair bundle: many of the mechani-
cal properties may be defined as functions of this value,
which is clearly regulated along the cochlea. In agreement
with experiment, near the bifurcation locus the model maps
tall, thin hair bundles to the low-frequency range and short,
broad bundles to higher frequencies. A second control pa-
rameter governs Ca21-binding kinetics; faster transitions
correspond to higher oscillation frequencies. Tuning of
this parameter may be achieved through modulation of the
intracellular Ca21 concentration, which is also subject to
tight regulation [24]. These models demonstrate that hair
cells can operate near a Hopf bifurcation for realistic pa-
rameter values.

We have shown that tuning to a Hopf bifurcation can ac-
count for three well-documented essential nonlinearities of
the ear: compression of dynamic range, sharper cochlear
tuning for softer sounds, and generation of combination
tones. The great advantage of the regenerative tuning strat-
egy is that it requires a minimal number of active ele-
ments; because the tuner and the amplifier are one and
the same, this mechanism is evolutionarily accessible. We
have also reviewed evidence that the sensory receptors of
the cochlea, the hair cells, operate near a Hopf bifurcation.
Because the cochlea is a complex geometrical structure
traversed by nonlinear waves, relating the contribution of
individual hair cells to the behavior of the entire organ re-
mains both a theoretical and an experimental challenge.
It is important to determine, for instance, whether hair
bundles are stiff enough to affect the propagation of the
cochlear traveling wave and whether the hair cells’ elec-
trical responses affect hair-bundle movement. Despite the
difficulty in linking the ear’s microscopic to its macro-
scopic behavior, though, it seems likely that the process
that poises the ear as a whole near a Hopf bifurcation is
identical to that involved in bringing each hair cell to a bi-
furcation. A hair cell in the cochlea can measure its input
only in the context of the organ as a whole, and the only
active element positioned to adjust the cochlea’s behavior
is the hair cell.
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