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Spectral Weight of the Hubbard Model through Cluster Perturbation Theory
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We calculate the spectral weight of the one- and two-dimensional Hubbard models by performing
exact diagonalizations of finite clusters and treating intercluster hopping with perturbation theory. Even
with relatively modest clusters (e.g., 12 sites), the spectra thus obtained give an accurate description
of the exact results. Spin-charge separation (i.e., an extended spectral weight bounded by singularities
dispersing with wave vector) is clearly recognized in the one-dimensional Hubbard model, and so is
extended spectral weight in the two-dimensional Hubbard model.

PACS numbers: 71.27.+a, 71.10.Fd, 71.10.Pm, 71.15.Pd
One of the central issues in the theory of strongly cor-
related electrons is the existence or not of well-defined
quasiparticles. This question is best addressed by studying
the spectral weight (SW) A�k, v�, i.e., the probability dis-
tribution for the energy h̄v of an electron of wave vector
k added to or removed from the system. In a Fermi liq-
uid, the SW is dominated by a single quasiparticle peak
centered at v � ´�k�, whose width decreases as ´�k�
approaches the Fermi energy. In a Luttinger liquid, the
SW is distributed between two singularities associated, re-
spectively, with spin and charge excitations (spinons and
holons) [1]. The hole (i.e., electron-removal) part of the
SW can be measured by angle-resolved photoemission
spectroscopy (ARPES), a technique which has improved
steadily in recent years [2–4]. On the theoretical side, the
SW is obtained from the one-particle Green function:

A�k, v� � lim
h!01

22 ImG �k, v 1 ih� , (1)

and the latter may be approximately evaluated by various
analytical and numerical methods.

In this Letter we propose a new method for calculat-
ing A�k, v� in Hubbard-type models, based on a com-
bination of exact diagonalizations (ED) of finite clusters
with strong-coupling perturbation theory [5,6]. We call it
cluster perturbation theory (CPT) and apply it to the one-
and two-dimensional Hubbard models. Exact diagonal-
izations based on the Lanczos algorithm are commonly
used to evaluate A�k, v� [7–10]. Unfortunately, com-
puter memory requirements grow exponentially with sys-
tem size and restrict the analysis to small clusters (e.g.,
16 sites for the Hubbard model). The SW thus obtained
is the sum of a relatively small number of poles and its
extended character in the thermodynamic limit is diffi-
cult to assess. The SW may also be evaluated by quan-
tum Monte Carlo (QMC) [11–14]: larger systems may
thus be studied (e.g., 64 sites) but the maximum entropy
method (MEM) used for approximate analytic continuation
tends to produce smooth SW and may miss weak features;
moreover, computation time increases as the temperature
is lowered. The new method we propose consists of (i) di-
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viding the lattice into identical N-site clusters, (ii) evalu-
ating—by ED—the one-particle Green function Ga,b�z�
within a cluster (a, b are lattice sites and z a complex fre-
quency) with open boundary conditions, and (iii) treating
the intercluster hopping t0 in perturbation theory and re-
covering the Green function G�k, v�. Thus, short-distance
effects are treated exactly, while long-distance propagation
is treated at the one-particle analog of the RPA level.

Step (i) is illustrated in Fig. 1. We denote by t and
t0 the hopping amplitudes within and between clusters,
respectively (t and t0 may be different a priori, but will
be identical in practice). Clusters of up to N � 12 sites
have been treated, with various aspect ratios in the 2D case.
Open (free) boundary conditions must be used. Step (ii)
proceeds according to the usual Lanczos method [7]. The
cluster Green function Ga,b�z� is defined as

Ga,b�z� � �Vjca
1

z 2 H
c
y
b jV� 1 �Vjc

y
b

1
z 1 H

cajV� ,

(2)

where jV� is the ground state obtained by ED, ca is the
electron destruction operator at site a (we drop the spin
index), and H is the Hamiltonian (including chemical po-
tential). The two terms in Ga,b correspond, respectively, to

FIG. 1. Dividing the lattice into identical four-site clusters for
the 1D and 2D Hubbard models. The in-cluster hopping ampli-
tude is t and the intercluster hopping is t0.
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electron (Ge
a,b) and hole (Gh

a,b) propagation and are calcu-
lated separately. In the subspace containing one additional
electron (with respect to the ground state), an accurate
tridiagonal representation of H is obtained (typically of
dimension ranging from 50 to 250). Efficient routines for
inverting tridiagonal matrices are used to evaluate G

e,h
a,b�z�

at any desired complex value.
Step (iii) demands more explanations. Let cm,a be the

electron destruction operator on site a of cluster m (a �
1, . . . , N). The full system is treated as a superlattice of
clusters, each cluster being made of N ordinary lattice
sites; we will work in one dimension for simplicity, but
a suitable generalization to higher-dimensional lattices is
readily obtained. The complete Hamiltonian of the system
may be written as H � H0 1 V :

H0 �
X

m[�

H0
m, V �

X
m,n
a,b

V
m,n
a,b cy

m,acn,b , (3)

where H0
m is, say, the Hubbard Hamiltonian of the mth

cluster,

H0
m � 2t

X
�a,b�,s

�cy
m,a,scm,b,s 1 H.c.�

1 U
X
a

nm,a,"nm,a,# ,

and V is the nearest-neighbor hopping between adjacent
clusters,

V
m,n
a,b � 2t0�dm,n21da,Ndb,1 1 dm,n11da,1db,N� . (4)

Of interest is the electron Green function Ga,b�Q, z�,
where Q is a superlattice wave vector, and a, b are site
indices within a cluster. The perturbation V being a
one-body operator, it may be treated in the formalism of
Refs. [5,6], wherein a systematic perturbation expansion
was constructed for such terms. The lowest-order contri-
bution to this expansion has the RPA-like form

Ga,b�Q, z� �

µ
Ĝ�z�

1 2 V̂ �Q�Ĝ�z�

∂
a,b

, (5)

where Ĝ�z� is the generalization of the “atomic” Green
function, now a N 3 N matrix in the space of site indices.
Likewise, V̂ �Q� is the reciprocal superlattice representa-
tion of the hopping (4):

Va,b�Q� � 2t0�eiQda,Ndb,1 1 e2iQda,1db,N� . (6)

Relation (5) may be regarded as a cluster generalization of
the Hubbard-I approximation [15].

The Green function Ga,b�Q� of Eq. (5) is in a mixed rep-
resentation: real space within a cluster and Fourier space
between clusters. A true Fourier representation in terms
of the original reciprocal lattice is preferred. Since the
cluster decomposition breaks translation invariance, G will
depend on two continuous momenta k and k0, identical
modulo a reciprocal superlattice vector:

G�k, k0; z� �
1
N

N21X
s�0

d

µ
k 2 k0 1

2ps
N

∂

3

NX
a,b�1

e2ik�a2b�e2pisb�NGa,b�Nk, z� . (7)

If we set t � t0, the momentum-conserving component
(s � 0, or k � k0) corresponds to the infinite system and is
the lowest-order CPT approximation to the Green function:

GCPT�k, z� �
1
N

X
a,b

e2ik�a2b�Ga,b�Nk, z� . (8)

Equations (5) and (8) are then used to calculate the SW.
The approximation (5) turns out to be exact in the ab-

sence of interactions (U � 0). In that case, Wick’s theo-
rem applies and Eq. (5) is the exact resummation of the
perturbation series, V̂ �Q� being the exact self-energy. In
addition, if we set t � t0, Eq. (8) then yields the exact
Green function for an infinite system at arbitrary wave vec-
tor, from the exact Green function G of an finite, open clus-
ter. When U fi 0, expression (8) is no longer exact, but
strong interactions tend to cause short-range correlations
that are incorporated with good accuracy in modest-size
clusters. Thus short-distance effects are well served by the
ED within a cluster, and long-distance effects by perturba-
tion theory, making our method adequate at intermediate
coupling. Note that the charge of a cluster is fixed in the
first part of the calculation (ED), but fluctuates once per-
turbation theory is applied.

We have applied the method just described to the 1D
Hubbard model. Figure 2 compares the result of ordinary

FIG. 2. A�p�2, v� for the 1D Hubbard model at half-filling
for U�t � 16 (above) and U�t � 8 (below). Shown are the
ordinary ED results and the CPT results for sizes N � 4, 8, and
12. The branch-cut shape of the SW is manifest in the best CPT
data. Note the parameter h of Eq. (1) has been set to 0.03 in
order to give delta peaks a finite width.
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EDs on rings with the present approach. Already at four
sites, the quality of the CPT spectrum is comparable
with that of the ED spectra on a 12-site ring. The CPT
spectra contain many more poles with significant residues
than the ED spectra, especially for large N . Whereas the
branch-cut shape of A�k, v�—a signature of spin-charge
separation— is not clear from the ED data alone, it is
clearly revealed by the CPT spectra for N � 12. In fact,
the two branches of the SW can already be seen with a
two-site cluster (not shown), but more and more poles
appear in between when the cluster size is increased. Note
that the actual separation of spin and charge excitations
needs a fair cluster size to occur, since hopping between
clusters requires the holon and spinon to recombine, at
least at this level of approximation.

Figure 3 illustrates the SW of the 1D Hubbard model
at half-filling with U�t � 4. Seventeen wave vectors
are shown, but the CPT method can treat any continuum
value of the wave vector, contrary to ordinary ED. Most
noteworthy are the following: (i) the extended character
of the SW, with six branches having a clear dispersion,
even though most of the weight lies near the “quasi-
particle band” following approximately the 22t cosk
free-particle dispersion; (ii) the gap opening at k � p�2;
(iii) the spinon (A) and holon (B) branches, characteristic
of a Luttinger liquid with a charge gap (branch D is the
mirror of the holon branch with opposite frequency) [16];
(iv) the weak, higher-frequency band (C), absent from
low-energy Luttinger liquid predictions; (v) the high-

FIG. 3. Spectral weight of the 1D Hubbard model at half-
filling, for U � 4t, calculated from Eqs. (5) and (8) with N �
12. Below, density plot of the same data.
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frequency tail (E) near the zone boundary. Band C,
as well as bands B and D together, disperse with
period p instead of 2p, a signature of local antifer-
romagnetic correlations. A comparison with Fig. 1c
of Ref. [10]—which illustrates the SW in the U ! `

limit— is revealing of the changes brought about by a
finite value of U: in the U ! ` limit, just the hole
part of the SW is present, but the same branches can
be found, however, with comparable relative intensity:
Branches D and E are the mirror images of branches
B and A, respectively. The finite value of U weakens
considerably the intensity of branches C, D, and E.
It is also interesting to compare Fig. 3 with Fig. 2
of Ref. [12] and Fig. 3 of Ref. [5], where the same
parameters were used. In particular, it is clear that the
maximum entropy method of Ref. [12] lumps the spinon
and holon peaks near k � 0 into one broad peak.

Figure 4 shows the SW of the 1D Hubbard model for
the same value of U�t, but away from half-filling, at
�n� �

5
6 . The chemical potential m � 0.64 was inferred

from the integrated density of states. The Fermi level
crosses the main band, causing metallic behavior, but
again the SW is clearly extended, with a clear weakening
of the upper Hubbard band: there is a significant transfer
of SW from high to low frequencies [17]. Again, the
spinon (A) and holon (B) branches are clearly identified,
this time in a gapless Luttinger liquid. This may be
compared with Fig. 3 of Ref. [14], which corresponds to
the same U�t ratio, but with �n� �

3
4 .

FIG. 4. Spectral weight of the 1D Hubbard model at �n� �
5
6

and U � 4t, calculated from Eqs. (5) and (8) with N � 12.
Below: density plot of the same data.
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FIG. 5. Spectral weight of the 2D Hubbard model at half-
filling, for U � 8t, calculated from Eqs. (5) and (8) with a
3 3 4 cluster. Inset: The wave vector scans. Below: density
plot of the same data (except for the scan from X to Y) to be
compared directly with Fig. 1 of Ref. [13]. The dashed curve is
the best SDW dispersion, with t � 1.36 and gap D � 2.21.

We have also applied our method to the 2D Hubbard
model, with various cluster shapes. Figure 5 illustrates the
SW of the 2D Hubbard model at half-filling for U � 8t,
on a 3 3 4 cluster. This is to be compared with Fig. 1
of Ref. [13] and Fig. 6 of Ref. [6]. In contrast to the 1D
case, the SW is much more concentrated around one peak,
but its extended character is still undeniable. Indeed, one
is tempted to draw an analogy with 1D spinon and holon
branches: the momentum scan G 2 X 2 M shares fea-
tures with the �0, p� scan in the 1D case, except that the
“spinon” (A) is much weaker than the “holon” (B). The
same can be said of the diagonal scan G 2 M (from right
to left in Fig. 5). Likewise, a high-frequency band (C) is
visible. Most obvious is the gap opening at the Fermi sur-
face, constant along the XY line, a feature that would cer-
tainly be modified by including a diagonal hopping t0, and
which demonstrates anyway that nearest-neighbor hopping
alone cannot account for the ARPES data of insulating
cuprates [4] (this was already known for the t-J model).
Note that, whereas Refs. [13] and [6] both resolve two
peaks near point M, the present approach suggests an ex-
tended SW at that point. The expected antiferromagnetic
order of the half-filled 2D Hubbard model is not seen here,
because of finite cluster size. This order would imply a
folding of the Brillouin zone, with a corresponding sym-
metry of the SW following the SDW fit illustrated in Fig. 5.
Some general remarks are in order. Formulas (5) and (8)
are but the first order result of a systematic t0 expansion
(see Ref. [6] for details). It is difficult to assess the con-
vergence of this perturbative expansion, since it depends
certainly on the ratio t�U and on cluster size N . We expect
nonetheless the method to give better results at strong cou-
pling, where short-range effects dominate and are thus well
accounted for by modest clusters. Indeed, the effect of an-
tiferromagnetic correlations are already seen with two-site
clusters. Going to order t2

0 in strong-coupling perturba-
tion is a way of improving the results presented here, but
appears quite difficult in practice, because of the need to
compute numerically exact two-particle Green functions
on a cluster. The spectra presented here are all normal-
ized, up to 1% or 2%. The general form (5) guarantees
that the continued fraction form of the SW will have the
correct first coefficient, thus ensuring its normalization.

In summary, we have shown how strong-coupling per-
turbation theory can be used to incorporate long-distance
effects into ED data which already contain short-distance
effects exactly. This method allows for a clear recognition
of spin-charge separation in the 1D Hubbard model, and
of extended SW in the 2D Hubbard model. Further ap-
plications of this method (next-nearest-neighbor hopping,
three-band Hubbard model, etc.) are under way.
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