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Frustrated Heisenberg Magnets: A Nonperturbative Approach
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Frustrated magnets are a notorious example of where usual perturbative methods fail. Using a nonper-
turbative Wilson-like approach, we get a coherent picture of the physics of frustrated Heisenberg magnets
everywhere between d � 2 and d � 4. We recover all known perturbative results in a single framework
and find the transition to be weakly of first order in d � 3. We compute effective exponents that are in
good agreement with numerical and experimental data.
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Understanding the effect of competing interactions in
three-dimensional classical spin systems is one of the
great challenges of condensed matter physics. However,
after twenty five years of investigations, the nature of the
universality class for the phase transition of the simplest
frustrated model, the antiferromagnetic Heisenberg model
on a triangular lattice (AFHT model), is still a strongly
debated question [1]. Because of frustration, the ground
state of the AFHT model is given by a canted con-
figuration—the famous 120± structure—that implies a
matrixlike order parameter [2] and, thus, the possibility
of a new universality class. Experiments performed on
materials which are supposed to belong to the AFHT
universality class display indeed exponents different from
those of the standard O�N� universality class: for VCl2
[3], b � 0.20�2�, g � 1.05�3�, and n � 0.62�5�; for
VBr2 [4], a � 0.30�5�; for CuFUD [5], b � 0.22�2�,
for Fe�S2CN�C2H5�2�2Cl [6–8], b � 0.24�1� and g �
1.16�3�. These results, however, call for several comments.
First, the exponents violate the scaling relations, at least
by 2 standard deviations. Second, they differ significantly
from those obtained by Monte Carlo (MC) simulations per-
formed either directly on the AFHT model �n � 0.59�1�,
g � 1.17�2�, b � 0.29�1�, a � 0.24�2�� or on models
supposedly belonging to the same universality class:
AFHT with rigid constraints �n � 0.504�10�, g �
1.074�29�, b � 0.221�9�, a � 0.488�30��, dihedral (i.e.,
V3,2 Stiefel) models �n � 0.51�1�, g � 1.13�2�, b �
0.193�4�, a � 0.47�3��. See Ref. [9] for a review, and
references therein. Finally, the anomalous dimensions h

obtained by means of scaling relations are found to be
negative in experiments as well as in MC simulations, a
result forbidden by first principles for second order phase
transitions [10]. All of these results are hardly compatible
with the assumption of universality. It has been proposed
that the exponents are, in fact, effective exponents char-
acterizing a very weak first order transition, the so-called
“almost second order phase transition” [11–13].

From the theoretical point of view the situation is also
very unsatisfactory since one does not have a coherent pic-
ture of the expected critical behavior of the AFHT model
between two and four dimensions. On the one hand,
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the weak coupling expansion performed on the suitable
Landau-Ginzburg-Wilson (LGW) model in the vicinity of
d � 4 leads to a first order phase transition due to the
lack of a stable fixed point [14–16]. On the other hand,
the low temperature expansion performed around two di-
mensions on the nonlinear sigma (NLs) model predicts a
second order phase transition of the standard O�4��O�3�
universality class [17]. Since there is no indication that
these perturbative results should fail in their respective
domain of validity, i.e., for small e � 4 2 d and small
e � d 2 2, this situation raises two problems. First, and
contrary to what happens in the nonfrustrated case, one
cannot safely predict the three-dimensional behavior from
naive extrapolations of the perturbative results. Although
a direct computation in three dimensions, possible on the
LGW model [18,19], can circumvent this difficulty, such
an approach misses a second fundamental problem: the
incompatibility between the symmetries of the NLs and
LGW models. Indeed, the renormalization group flow
drives the NLs model action towards an O�4� symmetric
regime, more symmetric than the microscopical system, a
phenomenon that cannot occur within all previous treat-
ments of the LGW model (see Ref. [17] and below). The
LGW model is therefore unable to find the O�4� behav-
ior which has been nevertheless observed numerically in
d � 2 [20]. This raises serious doubts on the perturbative
analysis of the LGW model away from d � 4. Recipro-
cally, the perturbative analysis of the NLs model, based
on a Goldstone mode expansion, predicts an O�4��O�3�
fixed point everywhere between d � 2 and d � 4, as for
the N � 4 ferromagnetic model, in contradiction with the
perturbative LGW results and the experimental and numer-
ical situation in d � 3. All of this suggests that nonpertur-
bative features could play a major role and thus imposes
one to go beyond the standard perturbative approaches.

In this Letter we accomplish this program by using the
Wilson renormalization group framework [21]. We obtain
a coherent picture of the physics of the AFHT model ev-
erywhere between d � 2 and d � 4. We find that the
fixed point expected from the NLs model approach ex-
ists indeed in the vicinity of d � 2 but disappears below,
and close to, three dimensions. The transition for AFHT
© 2000 The American Physical Society
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in d � 3 is thus weakly first order, contrary to the differ-
ent predictions of both a new universality class [2] and an
O�4��O�3� second order behavior [17]. We obtain effec-
tive exponents compatible with the numerical and experi-
mental data quoted above. For generalization to N . 4
component spins, we find the transition in d � 3 to be
second order with exponents in good agreement with re-
cent extensive MC simulations—contrary to those found
from three loop Padé-Borel resummed series [19].

Our approach relies on the concept of effective aver-
age action [22,23], Gk�f�, which is a coarse grained free
energy where only fluctuations with momenta q $ k have
been integrated out. The field f corresponds to an average
order parameter at scale k, the analog of a magnetization
at this scale. At the scale of the inverse lattice spacing L,
Gk�L is the continuum limit of the lattice Hamiltonian ob-
tained, for example, by means of a Hubbard-Stratonovich
transformation. On the other hand, the usual free energy
G, generating one particle-irreducible correlation function,
is recovered in the limit k ! 0. The k dependence of Gk

is controlled by an exact evolution equation [24,25]:
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where t � lnk�L. The trace has to be understood as a
momenta integral as well as a summation over internal
indices. In Eq. (1), Rk is the effective infrared cutoff
which suppresses the propagation of modes with mo-
menta q , k. A convenient cutoff is provided by Rk�q� �
Zq2��exp�q2�k2� 2 1� [24,26], where Z is the field renor-
malization. In Eq. (1), G

�2�
k is the exact field-dependent

inverse propagator, i.e., the second derivative of Gk .
The effective average action Gk is a functional invariant

under the symmetry group of the system and thus depends
on all of the invariants built from the average order parame-
ter. In our case, it is well known that the order parameter
is a set of two vectors �f1 and �f2 which can be gathered
in a real N 3 2 matrix fab for N-component spins [2].
The symmetry of the system is the usual spatial rotation
group O�N� multiplied by an O�2� corresponding to the
symmetry of the underlying triangular lattice [17]. This
O�2� is realized on fab as a right O�2� “rotation” that
turns the �fi into each other. There are two independent
O�N� ≠ O�2� invariants built out of fab: r � Trtff and
t �

1
2 Tr�tff�2 2

1
4 �Trtff�2.

The exact effective average action involves all of the
powers of r, t and of derivative terms, and so Eq. (1) is
a nonlinear functional equation, too difficult to be solved
exactly in general. We therefore need to truncate it. One
possibility is to keep in Gk only the momentum (i.e.,
derivative)-independent part, an approximation called
the local potential approximation (LPA). In the case of
frustrated magnets, this has been considered by Zumbach
[11–13]. This approximation however misses the field
renormalization and worse, as described below, the
phenomenon of enlarged symmetry around d � 2 found
perturbatively in the NLs model [17]. This does not
mean that this approximation is not useful: it is simply, in
essence, unable to answer the question of the matching of
the different perturbative approaches. Another truncation
is, however, possible which preserves this possibility:
it consists of an expansion of Gk around its minimum
in order to keep a finite number of monomials in the
invariants r and t while including the derivative terms
which allow one to recover the different perturbative
results. We choose the simplest such truncation:

Gk �
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where �v, l, k, m, Z� are the coupling constants which pa-
rametrize the model. All terms but one— the “current
term” �eabfca=fcb�2 —are very natural and correspond
to those appearing in the usual LGW action that realizes
the symmetry breaking scheme of frustrated magnets. In-
deed for l and m $ 0, the minimum of the action is real-
ized by a configuration of the form f

min
ab �

p
k Rab , where

Rab is a matrix built with two orthonormal N-component
vectors. The symmetry of this minimum is a product of
a diagonal O�2� group and a residual O�N 2 2� group.
The symmetry breaking scheme is thus O�N� ≠ O�2� !
O�N 2 2� ≠ O�2�diag [17]. Note that, for fab � f

min
ab ,

one has r � 2k and t � 0 so that Eq. (2) corresponds
indeed to a quartic expansion around the minimum. The
spectrum in the low temperature phase consists of 2N 2 3
Goldstone modes and three massive modes: one singlet of
mass m1 � kl and one doublet of mass m2 � km which
correspond to fluctuations of the relative angle and of the
norms of the two vectors �f1 and �f2.

Without the current term, the truncation Eq. (2) is, how-
ever, not sufficient in our case. This term plays a crucial
role since, for N � 3, it allows the model to enlarge its
symmetry from O�3� ≠ O�2� to O�3� ≠ O�3� 	 O�4� at
the fixed point around d � 2, leading to the well-known
O�4��O�3� behavior [17]. The current term is systemati-
cally discarded in the perturbative treatment of the LGW
model around four dimensions, for the—correct—reason
that it is power-counting irrelevant. Here we can include
it in our ansatz since it is, in any case, present in the full
effective action Gk and, in fact, we must include it since
it becomes relevant somewhere between two and four di-
mensions. The formalism we use is in charge to decide
where it is important.

Let us emphasize that the effective average action
method leads to nontrivial and/or new results even within
a quartic truncation of Gk . One can mention the Kosterlitz-
Thouless phase transition [27], low energy quantum
chromodynamics [28], the Abelian Higgs model and
superconductivity [29,30], matrix models [31], etc. The
accuracy of the results thus obtained depends on two main
features: (i) the smallness of the anomalous dimension h
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and (ii) the fact that the thermodynamics of the system is
controlled by a unique minimum of Gk .

The flow equations for the different coupling constants
k, l, m, v, and Z are derived by using Eqs. (1) and (2)
along the same lines as in [28]. The explicit recursion
equations are too long to display and not particularly illu-
minating (see [32]). Moreover, they require a numerical
analysis, apart in d � 2 1 e and in d � 4 2 e, where,
as we now see, they get analytically tractable.
5210
The physics around two dimensions.—Around two di-
mensions, one expects that the perturbative “Goldstone
mode” expansion of the NLs model works well. In the
Goldstone regime, the fluctuations of the modulus of �f1

and �f2 and of their relative angle are frozen. This corre-
sponds to the large mass limit m1r , m2r ! `. In this limit,
our equations greatly simplify since the coupling constants
divide into two sets �k, v, Z� and �l, m� that do not mix.
We only quote here the flow equations for the renormal-
ized coupling constants of the first set:
dkr
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These equations admit a fixed point for any N . 2 of co-
ordinates k�

r � 1�e, v�
r � e, while l�

r , m�
r � cst. The

masses m�
1r , m�

2r are thus very large, proving the consis-
tency of the limit. In fact, with respect to the change of
variables: h1 � kr and h2 � 2kr �1 1 krvr �, the equa-
tions for kr and vr are exactly those obtained at one loop
in the perturbative analysis of the NLs model [17]. For
N � 3, they admit a fixed point for which the model is
O�4� symmetric.

Let us now recall how this phenomenon of enlarged
symmetry for N � 3 can be understood directly on the
partition function. At the fixed point, the potential gets
infinitely deep so that one recovers the hard constraints
of the NLs model: �f1� �f2 and �f2

1 � �f2
2 � k�

r . For
N � 3, this allows us to rewrite the current term as the
kinetic term of a third vector, the cross product of two oth-
ers: �eabfca=fcb�2 ~ �= �f3�2 with �f3 � �f1 ^ �f2. The
order parameter of the system is then a trihedral of or-
thogonal vectors � �f1, �f2, �f3�. Thus, contrary to what
could be expected from a naive expansion in powers of
the fields, the current term plays a role as important as
the usual kinetic terms. At the fixed point, vr takes a
value such that the three vectors play a symmetric role and
the symmetry breaking scheme is O�3� ≠ O�3��O�3� 	
O�4��O�3� instead of O�3� ≠ O�2��O�2�. Such a result
is of course missed within the LPA [11–13]. There-
fore, the presence of the current term not only improves
the accuracy of the calculation but it is necessary for its
consistency.

The physics around four dimensions.—Around four di-
mensions, we have expanded our equations at leading or-
der in the coupling constants lr and mr . At this order the
current term decouples and we are left with the following
equations for the quartic coupling constants:
dlr

dt
� �24 1 d�lr 1

1
16p2 �4lrmr 1 4m2

r 1 l2
r �4 1 N�� ,

8>>><
>>>: dmr

dt
� �24 1 d�mr 1

1
16p2 �6lrmr 1 Nm2

r � .
(4)
They are those obtained at one loop from the LGW ap-
proach [14]. These flow equations admit a stable fixed
point for N . Nc � 21.8, attesting that the phase transi-
tion is second order. For N , Nc the transition is first
order since no fixed point is found.

To higher orders, Nc depends on the dimension. In
d � 3, three loop calculations resummed in the manner of
Padé-Borel predict Nc�d � 3� � 3.91 [18]. Note, how-
ever, that this calculation exhibits unusual behaviors com-
pared to the O�N� case: the coefficients of the series
do not decrease monotonically and the series themselves
are not alternate [19]. These features reveal the poor
summability of the series. Finally, in the N � 6 case, for
which the transition is second order, the predictions based
on a Padé-Borel resummation, which provides n � 0.575
and g � 1.121 [19], are in clear disagreement with re-
cent numerical simulations, for which n � 0.700�11� and
g � 1.383�36� [19].

From this point of view our approach has several advan-
tages: first, since it matches with the one loop perturbative
results in d � 2 and d � 4 it is likely that the error does
not vary much with the dimension—a fact that has been
confirmed in the O�N� case for which the precision for
a given truncation is almost uniform with d. Second, it
does not rely on a Padé-Borel resummation and therefore
is free of the above-mentionned problems of convergence.
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Of course, our results will change while improving the
ansatz Eq. (2) by incorporating terms of higher order in
fields and derivatives. However, all cases already treated
within the average action method suggest that the lowest
order approximation gives fairly good results, even with
this crude approximation.

The physics between two and four dimensions.—Let us
first study the fate of the fixed point found analytically
in d � 2 1 e for N � 3. By numerically integrating the
flow equations, we find that this stable O�4��O�3� fixed
point describes a smooth trajectory in the coupling constant
space while d is increased. Our flow equations actually
admit another—but unstable—fixed point, which moves
toward the stable fixed point as the dimension is increased.
At a critical dimension dc � 2.87, the two fixed points col-
lapse and disappear. Above dc, no other stable fixed point
is found and we conclude that the transition is first order
in d � 3. We thus show that the O�4��O�3� fixed point
obtained from the NLs model plays no role in the three-
dimensional physics of frustrated magnets, as conjectured,
for example, by David and Jolicœur [33] and Dobry and
Diep [34]. We also discard the possibility of a new uni-
versality class conjectured on the basis of a naive extrapo-
lation of the e � 4 2 d calculation [1,2]. The proximity
of dc with d � 3, however, lets open the possibility of a
very weak first order phase transition with effective criti-
cal exponents. This behavior manifests itself in our equa-
tions by the existence of a minimum around which the flow
slows down. This characterizes a very large, although fi-
nite, correlation length j. A rough estimate of this corre-
lation length—a few hundred lattice spacings— indicates
that a pseudoscaling behavior can be observed although j

is not large enough to ensure a true universality. This could
explain the broad spectrum of effective critical exponents
found in experiments and numerical simulations. Although
the flow equations do not have a fixed point, we are able to
compute effective exponents by linearizing the flow equa-
tions around the minimum. We recover here the phenome-
non of almost second order phase transition first introduced
by Zumbach [11–13] within the LPA. To get accurate re-
sults we have to take into account the f6-like terms in
our ansatz. We find n � 0.53, g � 1.03, and b � 0.28,
which lie in between the various sets of exponents found
experimentally and numerically (see above). For compari-
son, Zumbach found n � 0.63 in the LPA [11–13], the
difference being mainly due to the anomalous dimension.

Finally, we find a true fixed point in d � 3 for N
larger than a critical value Nc�d � 3� � 4. For N � 6,
we get n � 0.74 and g � 1.45 which compare well with
the Monte Carlo data n � 0.700�11� and g � 1.383�36�
[19]. They are close to the LPA results, where n � 0.76
[12], and much better than those obtained by a three
loop calculation in d � 3 [19] (see above). We have
checked that our exponents do not vary significantly when
monomials of order 6 in the fields are included in the
ansatz Eq. (2).
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