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Pseudogap Phase in High-Tc Superconductors
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We describe the approach of the superconducting state as a sequence of crossover phenomena. As the
temperature is decreased, uncorrelated pairing of the electrons leads to the opening of a pseudogap at
T �

F . Upon further lowering the temperature those electron pairs acquire well behaved itinerant features
at T �

B, leading to partial Meissner screening and Drude-type behavior of the optical conductivity. Further
decrease of the temperature leads to their condensation and superconductivity at Tc. The analysis is done
on the basis of the boson-fermion model in the crossover regime between 2D and 3D.

PACS numbers: 74.25.Dw, 74.25.Gz, 74.72.–h
It is now generally accepted that the onset of supercon-
ductivity in high temperature superconductors (HTS) is
controlled by phase fluctuations [1], while a finite ampli-
tude of the order parameter is expected to persist up to
some T�, which can be well above Tc. It has also been
argued [2] that the shrinking of the pseudogap phase (the
interval �Tc, T��) with increased doping should be related
to an increase of the superfluid density ns rather than of
the coherence length. In that case, doping of HTS should
not induce a crossover between a Bose-Einstein condensa-
tion (BEC) of preformed pairs and a BCS state, and hence
the opening of the pseudogap should be unrelated to the
onset of superconducting fluctuations. These expectations
seem to be confirmed by specific heat data [3], transient
Meissner screening [4], and Andreev spectroscopy [5].
The picture evolves according to which a pseudogap opens
up, exclusively driven by amplitude fluctuations (dynami-
cal pair formation, uncorrelated in space and not necessar-
ily related to incipient superconductivity). At some lower
temperature short-range and short-time correlations of the
electron pairs set in, eventually driving the system into a
superconducting state.

From a theoretical point of view these are questions
which can be addressed without having to resort to a
specific microscopic mechanism for electron pairing
and can be studied on such models as the generalized
BCS Hamiltonian, the negative U Hubbard model, or the
boson-fermion model (BFM). These phenomenological
models [6], which explicitly incorporate pair correlations,
capture a number of normal state properties of the HTS.

In a classical BCS-type superconductor long-range
phase coherence occurs as soon as short-range amplitude
correlations (in the form of electron pairing) set in. A
simple mean field treatment can perfectly describe this
situation. On the contrary, in HTS amplitude and phase
correlations are separated and a minimal treatment must
contain the possibility of allowing for propagating modes
of electron pairs on a time scale of the order of the
inverse zero temperature gap [7]. We shall here explore
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the intricate relations between the onset of pairing of the
electrons, their becoming itinerant, and ultimately their
condensation. In order to separate these various features
in approaching the superconducting state we study them
in view of a dimensional crossover such as to capture
part of the doping induced changes when going from the
underdoped into the overdoped regime. The dimensional
crossover will be controlled by the degree of anisotropy
of the electron dispersion. The anisotropy in the electric
transport coefficients [8] lends itself to such a picture.

This study is based on the BFM, a phenomenological
model which is particularly suited for that purpose. The
notion of rather long lived short-range pair correlations
is introduced explicitly into this model by assuming the
presence of localized tightly bound electron pairs which
hybridize with pairs of itinerant electrons. We assume a
system described by effective sites each of which can al-
ternatively be occupied by either a bound electron pair or
a pair of itinerant electrons, uncorrelated with each other.
For the present study we shall assume a homogeneous dis-
tribution of both the bound electron pairs and the itinerant
electrons. It is, however, feasible that the distribution be-
tween those constituents occurs in the form of a phase-
separated phase with dynamically fluctuating regions of
predominantly bound electron pairs and regions with pre-
dominantly electrons, leading to “stripe phases.” Previous
studies of the BFM [9], based on conserving diagrammatic
approximations, let one envisage a well defined finite tem-
perature interval for the pseudogap phase in 1D and 2D,
while for 3D such a phase [10] should be restricted to a
very narrow temperature regime above Tc. This suggests
that the nature of the pseudogap phase should depend on
dimensionality and that the pair fluctuations which control
it have, depending on temperature, different characteris-
tics as far as superconducting fluctuations are concerned.
We expect that at least two energy scales should be in-
volved here, identifiable as two temperatures, T�

F � T�

and T�
B # T�

F : T�
F corresponding to the opening of the

pseudogap in the DOS of the electrons due to the onset
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of strong local correlations leading to electron pairing, un-
correlated in space; and T�

B corresponding to those local
pair states becoming well defined itinerant excitations due
to the onset of temporal and spatial correlations. We shall
determine the dependence of T�

F and T�
B on dimensional-

ity by monitoring the anisotropy of the ratio of the elec-
tron mass orthogonal to the basal plane to that within it,
a � m��mk in the bare electron dispersion,

´k �
1

mk

µ
jkkj

p

∂2

1
1

m�

µ
jk�j

p
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2 m .

The BFM is then defined by the following Hamiltonian:
H �
X
k,s

´kc
y
kscks 1 E0

X
q

by
q bq

1 y
X
k,q

�by
q ck1q#c2k" 1 H.c.� ,

with E0 � DB 2 2m and y denoting the pair-exchange
coupling constant. c�y�

ks
denote fermionic operators for

electrons with spin s and wave vector k, and b�y�
q describe

tightly bound electron pairs which will be considered as
simple bosons. The chemical potential m is common to
fermions and bosons (up to a factor of 2 for the bosons) in
order to guarantee charge conservation. We examine this
model within the lowest order self-consistent conserving
diagrammatic approximation for which the self-energies
for the fermions and bosons are given by
ImSB�q, v� � 2
y2

2p

Z d3k
�2p�3

Z
d´ ImGF�k 2 q, v 2 ´�ImGF�k, ´�

∑
tanh

µ
´

2kBT

∂
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µ
´ 2 v
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∂∏
,

ImSF�k, v� �
y2

2p

Z d3q
�2p�3

Z
d´ ImGF�k 2 q, ´ 2 v�ImGB�q, ´�

∑
tanh

µ
´ 2 v

2kBT

∂
2 cotanh

µ
´

2kBT
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.

GF�k, v� � �v 2 ´k 2 ReSF�k, v� 2 i ImSF�k, v��21

and GB�q, ´� � �v 2 E0 2 ReSB�q, v� 2 i ImSB�q,
v��21 denote the fully renormalized fermion and boson
Green’s functions which have to be determined self-
consistently. The above set of equations for the Green’s
functions is solved by a standard iterative procedure. The
integration over the momenta kk is carried out by sum-
ming over a grid of 1025 points in the interval �0, p�. The
integration over frequencies is carried out slightly above
the real axis, i.e., taking v � Re v 1 i h with h � 0.01
and by summation over 2048 real frequencies in the inter-
val �22, 2�. Throughout the present work all energies are
given in units of the bare basal plane bandwidth eD � 8tk.

The pseudogap features which result from the solution
of the above set of equations depend strongly on dimen-
sionality. In 1D and 2D the fermionic self-energy is es-
sentially determined by the term proportional to cotanh
which leads to the most divergent contribution. For 3D the
major contribution to the self-energy comes from the term
proportional to tanh and does not give rise to a noticeable
pseudogap effect. A pseudogap is seen only as we lower
the temperature and approach Tc where the term propor-
tional to cotanh again becomes important.

The various parameters entering our Hamiltonian are
determined such as to reproduce certain robust features of
HTS. Pinning down the number of bosons nB � �b1

i bi�
in this model is not free of ambiguities, given our poor
understanding of the doping process in these materials.
For a system such as, for instance, YBCO, the number
of doping induced bound electron pairs could possibly be
given by half the number of dopant ions O 22

2 �1� in the
chains, thus varying between 0 and 0.5 per effective site.
The number of fermions nF �

P
s�c1

iscis� is taken to be
equal to 1 if the boson-fermion exchange coupling were
absent. We thus obtain a total number of charge carriers
ntot � nF 1 2nB which should be contained between 1
and 2. As a representative example we choose ntot � 1.25.
In order to have nF # 1 we fix the bosonic level as DB �
1.1. In order to obtain values for T� of the order of a few
hundred K we choose y � 0.1.

The pseudogap manifests itself as a dip which emerges
in the density of states (DOS) of the electrons close to
the chemical potential below a certain temperature T�

F .
Tracing the value of the DOS at this energy as a function
of temperature permits one to identify this characteristic
temperature. The appearance of this pseudogap is linked,
as we have discussed previously [9], to a breakdown of
well defined single-electron excitations close to the Fermi
surface. Concomitantly with this trend, two-electron
states (local electron-pair resonances) emerge and, upon
lowering the temperature, acquire itinerant behavior below
a second characteristic temperature T�

B. T�
B is defined

by the condition (see Fig. 1) that the imaginary part
divided by the real part of the boson self-energy is small,
i.e., gB

q �T ��vB
q �T � � GB���qk, vB�qk, T �, T ����vB�qk, T � #

0.1 for small q vectors such as qk � 0.1. Below T�
B we

find vB�qk� � h̄2q2
k�2mB�T � for q # 0.2 where mB�T �

denotes the temperature dependent mass of the itinerant
two-particle excitations.

The two-electron states, becoming well defined as the
temperature decreases, goes hand in hand with a signifi-
cant increase of the distribution function for those states
with small wave vectors. It is this feature which leads to
a finite value of the amplitude of the order parameter in
the normal state while at the same time phase coherence
is totally absent. The temperature Tc at which supercon-
ductivity sets in is determined by the condition that the
two-electron excitations condense in a macroscopic quan-
tum state. According to the Hugenholtz-Pines theorem, it
is determined by DB 2 2m 2 ReSB�0, 0� � 0. We plot in
Fig. 1 these three characteristic temperatures as a function
5201
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FIG. 1. Variation of T �
F , T �

B, and Tc as a function of decreasing
anisotropy. In the inset, the effective mass mB [in units of mk�T�]
of the itinerant in-plane bosonic excitations as a function of
temperature (solid line) and the ratio of their width divided by
their real part; for a � 10.

of a. Notice the opposite trends of T�
F and Tc, approaching

each other as the isotropic limit is approached (a � 10�.
This is reminiscent of the experimental situation in cuprate
HTS materials, as we go from the underdoped towards the
optimally doped regime and might hence partly be related
to such a dimensional crossover.

In order to track such crossover behavior in the pseudo-
gap phase, leading from uncorrelated fluctuating electron
pairs to their itinerant behavior as the temperature is de-
creased, we now show how such features are related to
precursor Drude behavior of the optical conductivity and
partial Meissner screening above Tc. We encounter here
physics similar to that of the 2D noninteracting charged
Bose gas [11], where a macroscopic number of itinerant
bosonic states with momenta k # 1�j (j denoting the
coherence length) act together collectively in a way simi-
lar to the macroscopically occupied condensed states with
k � 0 in the superconducting phase. The optical conduc-
tivity s�q, v� and the diamagnetic susceptibility x�q, v�
are given by the longitudinal and, respectively, transverse
part of the linear response to an external vector potential
A�x, t� depending on space and time. The resulting current
is given by

�Ji�x, t�� �
e2

m2
kc

Z
d3x dt Kij�x 2 x0, t 2 t0�Aj�x0, t0� ,

Kij�x, t� � iQ�t� ��ji�x, t�, jj�0, 0���
2 2mkd�x�d�t�dijn

F�x� ,

where nF�x� denotes the density of the fermions and
jF

i �q, t� �
P

k 2kic
y
k2q�2ck1q�2 the Fourier transform of

their current density. Putting

Kij�q, v� � dijivs�q, v� 2 �qiqj 2 dijq
2�x�q, v�
5202
permits one to extract the optical conductivity and
diamagnetic susceptibility. The kernel Kij�x, t� is decom-
posed into two contributions. A first one is given by the
simple bubble for the current autocorrelation function and
neglecting vertex corrections. This is justified because of
the strong incoherent contributions of GF [9]. The second
contribution to this kernel is evaluated in terms of the typi-
cal Aslamazov-Larkin diagram which takes into account
the contributions of the itinerant bosons. Because of
the intrinsically localized nature of the bosons there are
no direct contributions of them to the electrical current.
However, since below T�

B those bosonic two-electron
excitations become itinerant they will, according to this
Aslamazov-Larkin mechanism, contribute to substantially
enhance the conductivity. This is manifest in the dc
resistivity (see inset of Fig. 2) which clearly shows that,
upon decreasing the anisotropy ratio a, the resistivity
changes qualitatively from an upturn to a downturn as the
temperature is lowered. Similarly, the effect of the pseu-
dogap and the precursor to a macroscopic quantum state
of the two-particle excitations can be tracked in the optical
conductivity (Fig. 2). By inspection of Fig. 2 we notice
that for frequencies above 	 0.01 the optical conductivity
drops as the temperature is decreased below T � 0.03
(indicative of a remnant of the pseudogap in the DOS of
the single-electron states), while for frequencies below
	 0.01 the optical conductivity for those temperatures
increases (indicative of an emerging precursor “Drude”
component as we approach Tc). The crossover tempera-
ture at T 	 0.01 is identified as the temperature T�

B where
the electron pairs become itinerant. As the temperature is
lowered, spectral weight is shifted downwards from the
frequency regime �0.01 # v # 0.04� thus enhancing this
Drude component below 0.01. Such a redistribution of
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FIG. 2. The in-plane optical conductivity (arbitrary units) for
a set of different temperatures and a � 10. The inset illustrates
the dc resistivity as a function of T , for a � 10 including
Aslamazov-Larkin contribution corrections (dash-dotted line)
and for a � 1000 including (solid line) and, respectively,
excluding them (dashed line). The arrow on the T axes
indicates T�

F for a � 1000.
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spectral weight is, in fact, observed [12]. For frequencies
below 0.001 (	 240 GHz, taking eD � 1 eV) the optical
conductivity increases substantially as one approaches Tc.

Similarly, the real part of the diamagnetic suscep-
tibility x 0�q, v� for small wave vectors (q # 1�j,
j � 1�

p
2mB�T �vB

0 denoting the coherence length) and
frequencies is negative and small for high temperatures.
It is given by the usual Landau diamagnetism of the elec-
trons arising from the first contribution to the kernel Kij .
For temperatures below T�

B (which is 0.011 63 for a repre-
sentative example of a � 103) we calculate x 0�q, v�, not
taking into account the phase fluctuations. Close to Tc

(� 0.011 27 for a � 103) x 0�q, 0�, however, is expected
to diverge as 1�j

2
KTB, where j

2
KTB is the Kosterlitz

-Thouless-Berezinskii coherence length for phase fluc-
tuations. Our calculated x 0�q, v� increases significantly
(roughly by a factor of 50) over the Landau diamagnetism
(see Fig. 3). It is given by the Aslamazov-Larkin contri-
bution of Kij , i.e., x 0�0, 0� 	 2ay4

≥
e2

24pmB�T �c2
kBT
v

B
0

¥
, a

being a numerical factor of order unity. The expression in
the bracket corresponds to that known from the 2D Bose
gas [11]. It is this contribution which leads to almost com-
plete Meissner screening. A characteristic frequency scale
thus emerges below which phase uncorrelated amplitude
fluctuations of the electron pairs behave in some respects
as condensed electron pairs in the superconducting state.
For frequencies v $ 1025 we find the usual Landau
diamagnetism, but for v # 1025 we notice a saturation
of x 0�q, v� which decreases as the temperature increases.
It is in this low frequency regime that we can extract
from the diamagnetic susceptibility an almost complete
Meissner screening for strong anisotropies. Its physical
meaningfulness arises from the fact that for such a system
there is phase locking over a given finite distance which
is controlled essentially by the thermal wavelength of the
itinerant bosons [13].

In this Letter we have examined the effect of pure am-
plitude fluctuations in the pseudogap phase of HTS as the
dimensionality of the system varies between quasi-2D and
quasi-3D. We conclude that the doping induced crossover
between the underdoped and the overdoped regimes might
at least partly be related to such a dimensional crossover,
clearly indicating a shrinking of the temperature regime
for the pseudogap phase as the optimally doped limit is
approached. We identified two characteristic temperatures
in the pseudogap phase: the first one, T�

F , correspond-
ing to the opening of the pseudogap due to the onset of
local uncorrelated electron-pair correlations; and the sec-
ond one, T�

B, corresponding to the onset of itinerant behav-
ior of those electron pairs, below which we expect partial
Meissner screening (very similar to that expected for the
2D noninteracting charged Bose gas, i.e., in the absence of
any phase fluctuations) and an optical conductivity show-
ing Drude behavior.
FIG. 3. Real part of the in-plane diamagnetic susceptibility for
small q and frequency v � 0 as a function of temperature. In
the inset, its frequency dependence for different temperatures.
a � 1000.
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