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Landau Theory of the Finite Temperature Mott Transition
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In the context of the dynamical mean-field theory of the Hubbard model, we identify microscopically
an order parameter for the finite temperature Mott end point. We derive a Landau functional of the order
parameter. We then use the order parameter theory to elucidate the singular behavior of various physical
quantities which are experimentally accessible.

PACS numbers: 71.30.+h, 71.10.Fd, 71.27.+a
When the strength of the electron-electron interaction
U is increased compared to the bare bandwidth 2D, a
metal-insulator transition occurs [1]. This phenomenon,
known as the Mott transition, can take place in the absence
of magnetic long-range order, and is still an outstanding
problem in condensed-matter physics. From a theoretical
point of view, a difficulty is the absence of an obvious order
parameter to systematize the critical behavior of the ob-
servable quantities when the metal-insulator transition is
not accompanied by the onset of magnetic long-range
order. These issues are experimentally relevant to systems
such as V2O3 and Ni�Se, S�2 and are the subject of inten-
sive experimental study [2].

In recent years, great progress has been made by
using the dynamical mean-field theory (DMFT) [3]. This
framework describes both paramagnetic metallic and
paramagnetic insulating phases. The U-T phase diagram
(T is the temperature) of the frustrated Hubbard model
in the limit of large lattice coordination is qualitatively
similar to that of the V2O3 and Ni�Se, S�2 systems: A
first-order phase-transition line ends in a second-order
critical point, henceforth referred to as the Mott critical
point, which is the main focus of this Letter. We will
use this framework to address the fundamental questions
raised in the previous paragraph.

There are two earlier qualitative ideas as to what should
be the order parameter to describe the physics around the
finite temperature Mott point. One idea is to connect the
order parameter to the notions of “metallicity” or coher-
ence. It can be traced back to the early paper of Brinkman
and Rice [4] and is captured in a slave boson formalism
where the metallic state has a nonzero expectation value
of a Bose field which describes the coherent propagation
of one particle excitations [5]. In a very different pic-
ture, Castellani et al. viewed the metal as a liquid rich in
doubly occupied sites, and the insulator as a liquid with
few doubly occupied sites. The metal to insulator transi-
tion is viewed as a condensation of doubly occupied sites,
and the order parameter is related to the Blume-Emery-
Griffith model [6]. The Landau approach presented here
provides a synthesis of these ideas. It bridges naturally
between a picture based on one particle excitations and
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a picture based on local collective excitations (or double
occupancies). In agreement with Castellani et al. we find
that the Mott transition has indeed an Ising-like character.
On the other hand, we obtain a complementary description
in terms of the one particle spectral function reminiscent
of the slave boson picture. A simple and clear description
of the critical behavior near the critical point emerges. It
allows us to systematically derive the critical behavior of
any observable quantity and to relate its nonanalytic de-
pendence on T and U to that of the order parameter. Our
results should be also of help in resolving some contro-
versies on the solution of the Hubbard model in infinite
dimensions [7,8] by providing a theoretical framework in
which to analyze numerical results on the finite tempera-
ture Mott transition. It can also be used to analyze results
of photoemission and optical conductivity experiments.

For simplicity, we focus on the single-band Hubbard
model at half filling:
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The first term describes the hopping between nearest
neighbors on a lattice with coordination number z. The
corresponding half bandwidth is our unit of energy,
D � 2t � 1. The second term is an on-site interaction
suppressing double occupancies by imposing an energy
cost U on each one. In the limit of infinite dimen-
sions, z ! `, this model can be mapped onto a single-
impurity Anderson model (SIAM) supplemented by a
self-consistency condition. We adopt a semicircular
density of states, which is realized on the Bethe lattice.
The dynamical mean-field equations can be obtained by
differentiating the Landau functional,

FLG�D� � 2T
X
n

D�ivn�2

t2
1 Fimp�D� , (2)

with respect to the hybridization function D�ivn� of the
SIAM, which has the meaning of a Weiss field. ivn are
fermionic Matsubara frequencies, while Fimp�D� is the free
energy of the SIAM, given by the action Simp � Sloc�D �
0� 1

P
s,n f1

s �ivn�D�ivn�fs�ivn�. Here, Sloc�D � 0� is
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the action of the local f level with the hybridization set to
zero. The first term in Eq. (2) is the cost of forming the
Weiss field D�ivn� around a given site, while the second
one is the free energy of an electron at this site in the
presence of the Weiss field. Using the Green’s function of
the SIAM, G�ivn� � �1�2T �dFimp�dD�ivn�, the mean-
field equation reads

t2

2T
dFLG�D�
dD�ivn�

� t2G�ivn� �D,a� 2 D�ivn� � 0 . (3)

Here, a � �U,T � comprises the control parameters. This
Landau approach was used to describe the energetics of
the Mott transition at zero temperature [9]. We will show
that, near the finite temperature Mott point, the Weiss field
has a singular dependence which can be parametrized by a
single number which assumes the role of an effective order
parameter for this transition.

As in Landau theory, we assume that a finite tempera-
ture transition exists, and derive a complete description of
the critical behavior near the transition as follows: First,
we expand the mean-field equation (3) around the criti-
cal point, ac � �Uc,Tc�, up to third order in the devi-
ation of the hybridization function from its value at the
critical point, dD � D�ac 1 da� 2 D�ac�, and to first
order in da � �U 2 Uc,T 2 Tc�. This expansion is
well-behaved because the impurity model at finite tem-
peratures depends smoothly on a and dD�ivn�. In order
to carry out this expansion it is convenient to define a fluc-
tuation matrix:

Mnm �
t2

2T
d2FLG�D�

dD�ivn�dD�ivm�

Ç
critical point

. (4)

Mnm has the form 2dnm 1 Knm, where Knm is the
Fourier transform of a kernel K�t, t0� which is pro-
portional to the connected correlation function of an
operator O�t� �

Rb
0 du f1�u 1 t�f�u�, �O�t�O�t0�� 2

�O�t�� �O�t0��, where the average � � is calculated
with the action of an Anderson impurity model. It
is well known that the correlation functions of the
Anderson impurity model are bounded, and therefore the
kernel K is square integrable

Rb
0

Rb
0 dt dt0 jK�t, t0�j2 ,

`. Therefore it Knm is a Fredholm operator and has a
discrete spectrum of eigenvalues which we labeled by the
index l [10].

At half filling, particle-hole symmetry guarantees that
the order parameter D�iv� is odd and wholly imaginary.
Accordingly, the fluctuation matrix is real and symmet-
ric and has real eigenvalues ml belonging to eigenvectors
fl�ivn� which can be chosen to be purely imaginary and
to form an orthonormal basis. The critical point, in this
description of the problem, is signaled by the appearance
of a single zero eigenvalue, m0 � 0, which indicates the
occurrence of a simple bifurcation.

Next, we represent dD in the eigenbasis of the matrix
(4), dD�ivn� �

P
l hlfl�ivn�, where all hl are real. By
projecting the mean-field equation (3) onto the eigenbasis
fl, we obtain an equation of the form

mlhl 1 F
�0�
l ��hjfi0	� 1 F

�1�
l ��hjfi0	�h0 1

F
�2�
l ��hjfi0	�h20 1 F

�3�
l h30 � 0 , (5)

which holds for all l. F
�0�
l is of order da. F

�1�
l and F

�2�
l

have Taylor expansions in the hjfi0, where F
�1�
l starts with

the linear order. We solve Eq. (5) iteratively for all hlfi0

to obtain hlfi0 � al 1 clh
2
0 1 dlh

3
0 . Here, al is of first

order in da, (which assures us that the leading singular
dependence of the spectral function is proportional to f0);
further corrections have the form blh0 with bl also of
order da. By inserting this expression into the l � 0
case of Eq. (5), we derive an effective equation for the
zero-mode amplitude h0. We can think of h0 as the soft
mode near the transition and hlfi0 as massive modes. The
elimination of the massive modes renormalizes the coef-
ficients of the effective action for the soft mode. In the
resulting cubic equation for h0, we eliminate the quadratic
term by shifting h0 by an appropriately chosen linear func-
tion in da, h � h0 1 const1 3 �T 2 Tc� 1 const2 3

�U 2 Uc�. Close to the critical point, h and h0 are
dominated by nonanalytic terms and are therefore essen-
tially equal. We thus obtain an equation of state without a
quadratic term in h:

ph 1 ch3 � h . (6)
Here, all quantities are real.

As in Landau theory, a microscopic calculation of the
Landau coefficients (p, c, h) is difficult. However, we can
extract exact information about the critical behavior from
the knowledge that they are smooth functions of the control
parameters: i.e., c is finite at the critical point, whereas
p and h are linear functions of da, h � h1�U 2 Uc� 1

h2�T 2 Tc�, and p � p1�U 2 Uc� 1 p2�T 2 Tc�. As a
consequence, h has a singular dependence on U and T
near the critical point. At U � Uc, and for T near Tc,

h�Uc,T � 
 sgn�h2�c� sgn�T 2 Tc� jT 2 Tcj
1�3. (7)

The mean-field equation (6) describes the Mott tran-
sition close to the critical point in terms of the order
parameter h. In this form, the analogy with the liquid gas
transition is evident. The Mott transition takes place on
the line in the U-T plane where h vanishes and the system
has full Ising symmetry. The critical point, �Uc,Tc�, di-
vides this line into two half-lines. On the half-line where
T , Tc, there are two solutions, h � 6

p
jp�cj. We will

see later that h parametrizes the strength of the quasi-
particle resonance of the single-particle spectrum [see
Fig. 2 (below)]. A positive or negative “field” h increases
or decreases this component of the spectral function,
respectively. The field h decreases when U or T is
increased, because either increase eliminates the metallic
coherence and thus reduces the value of h. We have
used the sign convention whereby Imf0�v 2 i01��p is
positive.
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We now turn to various consequences of our con-
struction. From Eq. (6), we can obtain the shape of the
coexistence region near the critical point, where two
solutions of the mean-field equations coexist. It is
centered symmetrically about the h � 0 line, and
its width along T � const lines, DU, scales with
�Tc 2 T �3�2. The constant of proportionality is given by
�4�

p
c jh1j� �� p2 2 p1h2�h1��3�3�2.

An important quantity which is measured in numerical
simulations is the double occupancy. It is connected to our
order parameter h as follows: �d� � �T�U�

P
n���ivn 1

m�G�ivn� 2 1�eivn01

2 t2G�ivn�2	 � �d�c 1 c
�d�
1 h 1

c
�d�
2 h2. In this expansion about the critical point, we have

retained only the leading and next to leading nonanalytic
terms responsible for the critical behavior. The suscep-
tibility x � ≠�d��≠U diverges at the critical point. For
example,

x�U,Tc� 
 �c�d�
1 �3� sgn�h1�c� jh1�cj1�3jU 2 Ucj

22�3.
(8)

The double occupancy is related to the magnetization by
the identity ��n" 2 n#�2� � 1 2 2�d�. The magnetic re-
sponse will therefore also exhibit nonanalytic dependences
on the control parameters.

There have been several numerical studies of the finite
temperature Mott transition in this model. The Landau
approach predicts the functional dependence of various
quantities near the transition, and therefore the expressions
derived in this paper are useful for interpreting the nu-
merical work. To illustrate how our approach sheds new
light on previously obtained numerical data, we compare
in Fig. 1 the results for the double occupancy �d� obtained
within the iterated perturbation theory (IPT) and quan-
tum Monte Carlo (QMC) calculations with Dt � 0.5�D,
after carrying out the shifts and the rescaling described
in the figure caption. Within the statistical errors of the
QMC calculation, the agreement is excellent. This surpris-
ing result is consistent with the Landau theory: different
approximations for the solution of the impurity model re-
duce to the same Landau theory near the critical point, but
with different values of the Landau coefficients. There-
fore, with a suitable rescaling, the results near the critical
point should agree with each other, and with a fit based on
the Landau theory which is shown in the line in Fig. 1.

Small changes in the values of Dt result in shifts of Uc,
Tc, and �d� at criticality, but do not change the form of
the critical behavior. We also note that the critical slowing
down which has been observed in the iterative solutions
of the mean-field equations are a direct consequence of
the presence of the soft mode h described in the Landau
approach.

From our construction, it is clear that h provides
the leading nonanalytic behavior of the Weiss field. In
order to get a better feeling for its physical significance,
we have to understand how it can be probed experimen-
5182
2.1 2.2 2.3 2.4 2.5
U

0.02

0.03

0.04

0.05

0.06

0.07

0.08

do
ub

le
 o

cc
up

at
io

n

−0.005 0.000 0.005 0.010
[T−Tc]IPT 

−0.005

0.000

0.005

0.010

[T
−T

c]
Q

M
C

FIG. 1. Double occupation �d� as a function of U for different
temperatures. The thin lines denote IPT results for TIPT �
0.0469, 0.05, 0.052, 0.056 (top to bottom). The thick lines are
a fit to the IPT data using the LG theory. The circles are QMC
data obtained at TQMC � 1�40, 1�35, 1�32, 1�25 [8]. The IPT
results where shifted by a constant 20.07 along the U axis and
by 20.003 along the �d� axis. The curves for the three larger
temperatures are above Tc and the lowest temperature ones (two
branches) are just below. The inset shows the scaling of the
reduced temperatures �T 2 Tc�QMC versus �T 2 Tc�IPT .

tally. Since the order parameter is closely related to
the amplitude of the quasiparticle peak, photoemission
is an ideal tool to probe the temperature and pressure
dependence of the order parameter near the critical point.
This experimental technique, in the angle integrated mode,
would also measure the convolution of the Fermi function
with the analytically continued eigenfunction of the zero
mode, Imf0�ivn � v 2 id�. To visualize the shape of
the spectral function near the critical point, we must resort
to calculations based on analytic methods such as IPT.

The inset of Fig. 2 shows the spectral function very near
the critical point, computed within the IPT.

It illustrates how the compromise between metallic and
insulating features is realized. A finite h, depending on
its sign, adds or subtracts spectral weight to the coherent
low-energy feature immersed in a constant background in
between the Hubbard bands. The zero mode is seen to
affect mainly the low-energy part of the spectrum, which
determines whether the system is metallic or insulating.
The strong temperature dependence has been noticed in
previous theoretical and experimental studies [12]. Its
origin and connection to an order-parameter description
of the Mott transition, however, had not been recognized
until now. In the main panel of Fig. 2 we display the height
of the quasiparticle peak A0 � iD�i01��pt2, for U 
 Uc,
as a function of temperature in the vicinity of Tc. The
rapid variation seen in the figure is consistent with the

form A0 � A0c 1 c
�A�
1 h 1 c

�A�
2 h2 with coefficients c

�A�
i

independent of U and temperature.
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FIG. 2. The density of states at the Fermi energy r�0� � A0 as
a function of temperature in the critical region (U � 2.463 16 �
Uc). The singular behavior of the slope at Tc � 0.046 897
can be clearly appreciated. The inset shows the variation of
the spectral function for U 
 Uc in the vicinity of Tc: dashed
line for T 2 Tc�Tc � 20.000 25, solid line for T 2 Tc�Tc �
0.000 06, and dotted line for T 2 Tc�Tc � 0.000 49 [11].

Optical techniques are probably the best tool available
to test the predictions of our theory. For instance, one
may consider the integral of the optical conductivity up
to some cutoff, Neff�T �. Since the optical conductivity
in infinite dimensions is directly expressed in terms of
the single-particle Green’s function, Neff�T � must also
exhibit the singular temperature dependence near the
transition. We would therefore expect the temperature
variation of this quantity to be most visible for a relatively
small cutoff, displaying a rapid variation with T similarly
as for A0. Since the singular dependence arises from the
order parameter h, it should be possible to fit the Drude
weight by Neff�T � � Neff�Tc� 1 c

�N�
1 h�T � 1 c

�N�
2 h2�T �.

Neff�T � has recently been measured in NiS22xSex [13]; the
observed strong temperature dependence of the effective
number of carriers is consistent with our predictions.

In summary, we derived an order parameter description
of the Mott transition near its critical point in the U-T
plane. We showed that the critical behavior in proximity
to this point is governed by an Ising-like Landau functional
and is present in a large number of observable quantities.
We predict that any physical quantity which is sensitive to
the single-particle spectrum exhibits singular dependences
on the control parameters close to the finite-temperature
Mott point. The leading nonanalytic behavior of other
physical quantities can be obtained along similar lines, i.e.,
by recognizing their coupling to the order parameter. This
involves a few coefficients (i.e., the c�A�’s) which depend
on the observable (and on the approximation method) and,
as in Landau theory, should be taken as parameters. The
dependence on temperature and on pressure is completely
determined from the temperature or pressure dependence
of the order parameter that follows from Eq. (6).
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