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and Reduced Density Matrix Functional Theory
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For a linear combination of electron densities of degenerate ground states, it is shown that the value
of any energy functional is the ground state energy, if the energy functional is exact for ground state
densities, size consistent, and translational invariant. The corresponding functional of kinetic and inter-
action energy is the linear combination of the functionals of the degenerate densities. Without invoking
ensembles, it is shown that the energy functional of fractional number electrons is a series of straight
lines interpolating its values at integers. These results underscore the importance of grand canonical
ensemble formulation in density functional theory.

PACS numbers: 71.15.Mb, 31.15.Ew
Density functional theory (DFT) [1–4] is a rigorous ap-
proach for describing the ground state of any electronic
system. Much progress has been made in the theoreti-
cal formulation, approximation, and application of func-
tionals. The success of DFT is based on the quality of
approximation for the energy functional. The construc-
tion of accurate approximations depends on the theoretical
formulation.

The original Hohenberg-Kohn theorem only formulates
the energy functional for y-representable densities—
densities which can be constructed from a ground
state wave function (which are also called pure-state
y-representable densities). Since there is no easy way
to tell when a given density is y representable, it is
necessary to extend the domain of the energy functional to
an easily defined set of densities. Towards this goal, Levy
[3,5] and Lieb [6] extended the energy functional to all
nonnegative, continuous densities which integrate to an
integer number of electrons. Such densities are said to
be N representable, as they can be constructed from a
pure-state many-electron wave function. The extension
to densities which correspond to mixed states was made
by Valone [7]. Since DFT uses the electron density as
the fundamental variable, it is also necessary to treat
systems with fractional numbers of electrons [8–10].
Such an extension was made by Perdew, Parr, Levy, and
Balduz [11].

In this Letter, we examine these two types of densi-
ties, non-y-representable densities and densities which
integrate to a fractional number of electrons. We show that
such densities can arise as the densities of isolated sub-
systems inside a “supermolecular” system which is
described by a ground state wave function. We prove that
density functionals which are exact for y-representable
densities, size consistent, and translationally invariant
behave like density functionals formulated through con-
strained search in the grand canonical ensemble. This un-
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derscores the importance of the grand canonical ensemble-
based formulation of DFT. Similar results are also
obtained for energy functionals of first-order reduced
density matrices (1-RDM).

How non-y-representable densities arise as subsystem
densities for isolated subsystems inside a supermolecular
system is conveniently illustrated by a simple example.
Consider the case of N electrons in an external potential
yR�r� which has a threefold degeneracy in its ground
state with the ground state energy E0

yR
�N�. We use R

to indicate the location of the external potential. For ex-
ample, we can just take R to be the center-of-mass vector
of the nuclei generating the external potential. The three-
dimensional vector space of the ground state can be
described by three orthogonal and degenerate ground
state wave functions, FA�R�, FB�R�, and FC�R�, where
the coordinates of the electrons are not written explicitly.
The Schrödinger equations for FA is

ĤRFA�R� � E0
yR

�N�FA�R� , (1)

where the Hamiltonian ĤR is composed of the N-electron
kinetic energy, electron-electron interaction energy, and the
potential term from yR�r�. Similar equations follow for
FB and FC .

Now construct a 3N-electron system in the external
potential y�r� � yR1�r� 1 yR2 �r� 1 yR3�r�. The Hamil-
tonian is Ĥ � ĤR1 1 ĤR2 1 ĤR3 . We consider our
system only at the infinite-separation limit; namely,
jRl 2 Rl0 j ! `, for all l fi l0. Then the ground state
of the system is simply composed of three isolated
N-electron subsystem ground states with three identical
external potentials separated by infinite distances, assum-
ing the convexity condition

E0
yR

�N� # �E0
yR

�N 1 1� 1 E0
yR

�N 2 1���2 , (2)

which is known to hold for atoms and molecules from
experimental data [4,11]. The wave function is just the
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antisymmetric product of three separate ones. Since each
of the three N-electron systems has threefold degeneracy
in the ground state, described by FA, FB, and FC , we thus
have a total of 27-fold degeneracy for the ground state of
our 3N-electron system. One of the degenerate ground
state wave functions is

C1 � Â���FA�R1�FB�R2�FC�R3���� , (3)

where Â is the 3N-electron antisymmetrization op-
erator. There are a total of six (3!) wave functions
�Ck , k � 1, . . . , 6� of this type—each has three different
N-electron wave functions at the three different locations.
Note that FA�R1�, FB�R2�, and FC�R3� are ground state
wave functions for yR1 , yR2 , and yR3 , respectively. The
energy of any of the wave functions is 3E0

yR
�N�.

Clearly, any linear combination of the �Ck , k �
1, . . . , 6� is also a ground state wave function of our
system with energy 3E0

yR
�N�. Consider the averaged one;

namely,

C �

(
6X

k�1

Ck

) ,
p

6 . (4)

The electron density of this wave function is

r123 �
3X

l�1

rl �
3X

l�1

1
3

�rl
A 1 rl

B 1 rl
C� , (5)

where r
l
A, for example, denotes the electron den-

sity of FA�Rl�. We note that the cross terms like
N�Ck jd�r 2 r1�jCk0	 vanish because FA and FB are
orthogonal and the subsystems are infinitely separated.
The density of Eq. (5) is simply composed of three
identical densities rl � 1

3 �rl
A 1 r

l
B 1 r

l
C�, l � 1, 2, 3,

each separated from the other by an infinity distance.
The energy of this wave function and density is 3E0

yR
�N�.

While the density rl is non-y-representable [5,6], it is the
density of an isolated subsystem inside the supermolecule
described by the wave function of Eq. (4). This reveals a
surprising nonlocal property of quantum mechanics.

Now we consider the behavior of the energy functional,
Ey�r�, for this density. We do not restrict ourselves to
any specific formulation of Ey�r�, instead assuming that
Ey�r� possesses certain useful properties. Namely:

(1) Ey�r� is exact for any (pure-state) y-representable
densities. Hence, for the total density in Eq. (5), we have

Ey�r123�r�� � 3E0
yR

�N� . (6)

(2) Ey�r� is size consistent. Therefore,

Ey�r123�r�� �
3X

l�1

EyRl

∑
1
3

�rl
A 1 rl

B 1 rl
C�

∏
. (7)

(3) Ey�r� is translationally invariant. Therefore,

EyR1
�r1� � EyR2

�r2� � EyR3
�r3� . (8)

From Eqs. (6)–(8) it follows that

EyRl

∑
1
3

�rl
A 1 rl

B 1 rl
C�

∏
� E0

yR
�N� . (9)
This shows that for any energy functional which
possesses the desirable properties of exactness, size
consistency, and translational invariance, its value for the
non-y-representable density 1

3 �rl
A 1 r

l
B 1 r

l
C� is just the

corresponding ground state energy, E0
yR

�N�.
Note that here we define the functional size-consistency

condition with Eq. (7). There is also an energy size-
consistency condition for any quantum mechanical method
defined by the ground state energy expression Ẽ0

y�N�
for N electrons in an external potential y; it is, in our
example, Ẽ0

y�3N� �
P3

l�1 Ẽ0
yRl

�N�. The functional size-
consistency condition leads to the energy size-consistency
condition, but the converse is not always true.

We now generalize our result of Eq. (9) to include arbi-
trary linear combinations of degenerate densities, and ar-
bitrary numbers of degenerate densities. The final result
is the following: For an N-electronic system in potential
y�r� that has g degenerate ground state wave functions
�Fi , i � 1, 2, . . . , g� with corresponding densities �ri , i �
1, 2, . . . , g� and ground state energy E0

y�N�, we can con-
struct the density r �

Pg
i�1 Ciri , where �Ci� are positive

fractional numbers, and satisfy the normalization conditionPg
i�1 Ci � 1. The exact energy functional should satisfy

the following equation

Ey

"
gX

i�1

Ciri

#
� Ey�ri� � E0

y�N� . (10)

The proof of Eq. (10) is very similar to that of Eq. (9).
We here provide the proof for the case of g � 2 with
the two degenerate wave functions FA of Eqs. (1) and
FB. Consider a qN-electron system in the external po-
tential y�r� �

Pq
l�1 yRl �r� at the infinite-separation limit.

Then the system is simply composed of q noninteracting
N-electron systems with q identical external potentials
separated by infinite distances, assuming the convexity
condition of Eq. (2). The total ground state wave func-
tion is the antisymmetric product of q separated N-electron
ground state wave functions, with a total energy of qE0

yR
.

One such possibility is for the first p locations, R1 · · · Rp ,
to have the wave function FA and the rest the other wave
function FB; namely,

C1 � Â�FA�R1�FA�R2� · · · FA�Rp� (11)

FB�Rp11�FB�Rp12� · · · FB�Rq�� . (12)

Permutation of any two locations with FA and FB gen-
erates a different degenerate qN-electron wave function.
There are a total of m �

q!
p!�q2p�! such degenerate wave

functions, �C1, C2 . . . Cm�. For any wave function Ck ,
a particular location Rs can either have the wave function
FA or FB. In all such wave functions �C1, C2 . . . Cm�, the
number of times any location Rs having the wave function
FA is equal to mA �

�q21�!
�p21�!�q2p�! , and the corresponding

number for FB is mB � m 2 mA. In analogy to Eq. (4),
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the following qN-electron wave function is also a degen-
erate wave function

C �
1

p
m

mX
k�1

Ck , (13)

the density of which is

r �
1
m

(
qX

l�1

�mArl
A 1 �m 2 mA�rl

B�

)

�
qX

s�1

µ
p
q

rl
A 1

q 2 p
q

rl
B

∂
. (14)

Following the arguments leading to Eqs. (6)–(9), we have

EyRl

∑µ
p
q

rl
A 1

q 2 p
q

rl
B

∂∏
� E0

yR
�N� , (15)

which is just Eq. (10) for the case of g � 2. Our proof
can also be extended to arbitrary number of g, but we skip
the details here.
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We now explore the consequence of Eq. (10). In den-
sity functional theory, the energy functional is normally
expressed as

Ey�r� � F�r� 1
Z

ry dr , (16)

where F�r� is a universal density functional. From
Eq. (10) it follows Ey�

Pg
i�1 ciri� �

Pg
i�1 ciEy�ri�,

using the fact
Pg

i�1 ci � 1. This and Eq. (16) give

F

"
gX

i�1

ciri

#
�

gX
i�1

ciF�ri� . (17)

We now follow the usual decomposition, F�r� � Ts�r� 1

Exc�r� 1 J�r, r�, where Ts�r� is the noninteracting
Kohn-Sham kinetic energy, Exc�r� is the exchange cor-
relation energy, and J�r, r� is the Coulomb interaction

J�r1, r2� �
1
2

R R r1�r�r2�r0�
jr2r0j dr dr0. Equation (17) then

becomes
Ts

"
gX

i�1

ciri

#
1 Exc

"
gX

i�1

ciri

#
�

gX
i�1

ci�Ts�ri� 1 Exc�ri�� 1

gX
i,j

�cidij 2 cicj�J�ri , rj� . (18)
Equations (10), (17), and (18) place stringent conditions
on the density functionals. No known approximate func-
tional satisfies Eq. (17). For any energy functional satisfy-
ing Eqs. (6)–(8), according to Eq. (10), for an open-shell
atom with g-fold degeneracy, the energy for the spheri-
cally averaged density

Pg
i�1

1
g ri should just be the ground

state energy. This is not satisfied by any explicit func-
tional known so far: In practical DFT calculations for
open-shell atoms, it is well known that if one uses a
spherically averaged density, the calculated atomic en-
ergy is significantly higher than those from nonaveraged
densities, and the latter give much more accurate atomic
energies.

We now deal with the case of fractional number of elec-
trons with similar techniques. Consider a system with
qN 1 p electrons, where p, q�.p� and N are integers, in
the external potential y�r� �

Pq
l�1 yRl �r� at the infinite-

separation limit. Then the total system is simply composed
of q noninteracting systems with identical external poten-
tial separated by infinite distances. For the ground state of
this system, the only possible distribution of the number
of electrons among the q systems is for p systems to have
N 1 1 electrons and �q 2 p� systems to have N electrons,
assuming the convexity condition of Eq. (2). Let FN11 be
the ground state wave function for the �N 1 1�-electron
system and FN be the ground state wave function for the
N-electron system under the same potential yR. The total
ground state wave function is the antisymmetric product
of q separated ground state wave functions, with a total
energy of �q 2 p�E0

y�N� 1 pE0
y�N 1 1�. One such pos-

sibility is for the first p locations, R1 · · · Rp , to have the
wave function FN11 and the rest the other wave function
FN ; namely,
C1 � Â�FN11�R1�FN11�R2� · · · FN11�Rp�
3 FN �Rp11�FN �Rp12� · · · FN �Rq�� . (19)

Permutation of any two locations with FN11 and FN gen-
erates a different degenerate wave function. There are
a total of m �

q!
p!�q2p�! such degenerate wave functions,

�C1, C2 · · · Cm�. For any wave function Ck , a particular
location Rl can either have the wave function FN or FN11.
In all such wave functions �C1, C2 · · · Cm�, the number of
times any location Rl , having the wave function FN11 is
equal to mN11 �

�q21�!
�p21�!�q2p�! , and the corresponding num-

ber for FN is mN � m 2 mN11. In analogy to Eq. (13),
C � �1�

p
m �

Pm
k�1 Ck is also a degenerate wave func-

tion, the density of which is

r �
1
m

(
qX

l�1

�mN11rl
N11 1 �m 2 mN11�rl

N �

)

�
qX

l�1

µ
p
q

rl
N11 1

q 2 p
q

rl
N

∂
. (20)

Following the arguments of Eqs. (6)–(9), we have

Ey

∑
p
q

rN11 1
q 2 p

q
rN

∏

�
p
q

E0
y�N 1 1� 1

q 2 p
q

E0
y�N� ,

(21)

where we have dropped the reference to the location Rl .
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Equation (21) defines the ground state energy of frac-
tional number of electrons as

E0
y

µ
N 1

p
q

∂
�

p
q

E0
y�N 1 1� 1

q 2 p
q

E0
y�N� ,

(22)

which is identical to the result of Ref. [11]. However,
the present derivation does not invoke the grand canoni-
cal ensemble, instead using the conditions of “exact for
y-representable densities,” “size consistency,” and “trans-
lational invariance” of the energy density functional.

Note that Savin has also emphasized the importance of
the grand canonical ensemble formulation of DFT [12]
and Perdew [8] has showed that the expectation value of
the wave function for a system with fractional number of
electrons is the same as the ensemble expectation value.
Recently Schipper et al. have presented two molecular
examples concerning y representability [13].

Equations (10) and (21) are also valid for energy
functionals of one-dimensional reduced density matrix
(1-RDM) g because Eqs. (14) and (20) are valid for the
corresponding 1-RDM. In particular, Eq. (21) becomes

Ey

∑
p
q

gN11 1
q 2 p

q
gN

∏

�
p
q

E0
y�N 1 1� 1

q 2 p
q

E0
y�N� .

(23)

We can extend the canonical ensemble constrained-search
formulation of the 1-RDM functional [3,7] to the following
grand canonical ensemble formulation:

Ey�g� � min
Ĝ!g

Tr�ĤĜ� , (24)

where Ĥ is the Hamiltonian and the minimum is over all
g-constrained density matrices Ĝ in the Fock space. Then,
the 1-RDM functional satisfies Eq. (23).

In summary, for any size-consistent and translation-
invariant energy functional satisfying Eqs. (6)–(8), we
proved Eqs. (10), (17), (21), and (23). As a special
case of Eq. (10), for the spherically averaged density
of an open-shell atom, we also proved that the energy
of such a functional is the corresponding ground state
energy. Functionals defined only for densities associ-
ated with a wave function would have a great deal of
difficulty satisfying Eqs. (10) and (17), and functionals
defined only for integer number of electrons cannot obey
Eqs. (21) or (24). Only the grand canonical ensemble
formulation, defined in Ref. [11] for the density and
defined in Eq. (24) for the 1-RDM, can satisfy Eqs. (17),
(21), and (23). Therefore, our results underscore the
importance of developing functionals based on the grand
canonical ensemble approach.

As a final note, we reexamine the zero-temperature
grand canonical ensemble theory. The ground state energy
for an arbitrary number of electrons n, including fractional
numbers and integers, can be written as [4],

´0
y�n� � min

p�M�

"X
M

p�M�E0
y�M�

#
, (25)

where the summation is over all positive integers, M,P
M p�M� � 1,

P
M Mp�M� � n, and 1 $ p�M� $ 0.

With this definition, ´0
y�M� # E0

y�M�, and the convexity
condition, Eq. (2), is valid because

´0
y�n� � min

p�M�

"X
M

p�M�E0
y�M�

#

# �´0
y�n 1 1� 1 ´0

y�n 2 1���2 . (26)

Hence, in the grand ensemble definition, ´0
y�n� is a non-

concave function. Following Ref. [11], ´0
y�n�, as a func-

tion of the fractional number of electrons, is a piecewise
linear interpolation between the integer values. However,
´0

y�M� � E0
y�M� only when E0

y�M� is nonconcave.
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