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Theoretical Strength and Cleavage of Diamond
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The theoretical strength of diamond has been calculated for the �100�, �110�, and �111� directions using
a first principles approach and is found to be strongly dependent on crystallographic direction. This elas-
tic anisotropy, found at large strains, and particularly the pronounced minimum in cohesion in the �111�
direction, is believed to be the reason for the remarkable dominance of the �111� cleavage plane when
diamond is fractured. The extra energy required to cleave a crystal on planes other than �111� is discussed
with reference to simple surface energy calculations and also the introduction of bond-bending terms.

PACS numbers: 62.20.–x
For centuries, people involved in the handling and shap-
ing of diamond have been aware of the tendency for dia-
mond crystals to cleave quite easily when they are struck
by a well-oriented blow parallel to certain planes. There is
no shortage of experimental evidence demonstrating that
the fracture of diamond occurs predominantly along a pre-
ferred set of planes [1–7], and many mineralogical texts
describe its cleavage as perfect, yet a definitive explana-
tion has not emerged. The scale of observations ranges
from the remarkably flat (or stepped) surfaces often pro-
duced by whole-crystal cleavage, to the microscopic, dis-
torted “ring” cracks that appear upon Hertzian loading of
diamond surfaces.

In an attempt to explain the “easy” or �111� cleavage of
diamond, Ramaseshan [1], and more recently Field [8,9],
employed the method used by Harkins [10] to calculate the
energies required to cleave a crystal parallel to a particular
plane. The cleavage energy was assumed equal to twice the
surface energy of that plane. In this approximate method,
the energy is calculated as the number of bonds cut per
unit area multiplied by the thermodynamic energy of the
carbon-carbon bond, irrespective of whether the “cut” is
at an angle to the bonding direction. As the bond den-
sity on �111� planes is the lowest, the cleavage energy of
these planes is the lowest. However, as Ramaseshan has
pointed out, the cleavage energy calculated in this way is
not greatly different from that for other nearby planes, e.g.,
(332), which is only about 10% higher. Bearing in mind
the fact that in the crude method used for cleaving dia-
monds the energies employed may be much in excess of
what is required to effect cleavage in any direction, one
would expect to have a fracture rather than a perfect cleav-
age. Ramaseshan then revised this simple model, based on
the fact that there are two distinct atomic planes parallel to
�111� with spacings in the ratio 1:3. The number of bonds
cut per unit area is 3 times smaller on the widely spaced
planes than for the narrowly spaced planes. He then sug-
gested that cleavage on the former type of plane is bound
by the heavily bonded planes above and below, imposing
upon any planar deviation, “a threefold increase in energy.”
However, if the simple bond-cutting ideas were the whole
story, a crack could, in principle, easily avoid this energy
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barrier by following atomic-sized steps in the desired crys-
tallographic direction, especially if favored by the applied
stress field.

Ansell [11] proposed an explanation for �111� cleavage
based on the idea that maximum relief of nonbonded, re-
pulsive interactions accompanies the separation of such
planes. Indeed, nonbonding interactions can be respon-
sible for the rotation of free molecular structures in adopt-
ing low-energy/low-strain configurations. For example,
the hydrogens in ethane on opposing carbons avoid eclips-
ing each other as viewed along the C-C axis. As a result of
this type of interaction, O’Keefe and Hyde [12] argue that
there is an effective compression normal to the �111� planes
in diamond. Ansell then describes the process of fracture
as proceeding by a chain reaction whereby the C-C bonds
adjacent to a ruptured bond “keel over” as a result of the
repulsion from their immediate nonbonded neighbors.

The process of cleavage can be influenced by nonbonded
interactions for the case of heteroatom, and therefore par-
tially ionic, isostructural compounds, e.g., ZnS [13,14].
Here, because of electrostatic dipolar interactions, cleav-
age is found predominantly on �110� planes such that the
separated plane is electrically neutral. In such cases the
eclipsed bond repulsions are easily overcome. Nonbonded
interactions are smaller in magnitude and range when com-
pared with the superior bonding interactions, and in a
strong homopolar solid like diamond their contribution will
be very small. Their influence may aid the confinement of
fracture to �111� during dynamic growth, but this is almost
certainly a secondary effect and does not adequately ex-
plain the cleavage phenomenon.

A further explanation for the dominant cleavage plane
of diamond is that fracture follows planar weaknesses
caused by faulted growth and/or impurity incorporation
along �111� since these are the primary growth planes of
natural diamond. Cleavage surfaces on diamonds with few
impurities but a large number of dislocations are found to
be more orderly and perfect than on diamonds with these
characteristics reversed [3]. However, there is no clear pic-
ture yet as to the role of impurities and defects on the room-
temperature fracture behavior of diamond. In this work
we show that the cleavage behavior can be satisfactorily
© 2000 The American Physical Society
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explained without resorting to the influence of defects and
thus the phenomenon is intrinsic to the diamond lattice. Of
course, this is not to say that defects will have no effect.

Abraham and Gao [15] have explored the fracture be-
havior of fcc crystals using powerful molecular dynamics
simulations. In particular, they examined the competition
between ductile and brittle failure in metals and rare-gas
solids with interatomic interactions described by empiri-
cal potentials. They too note the failure of simple surface
energy arguments to explain cleavage behavior and turn in-
stead to the strong anisotropy in elasticity near the cohesive
limit as their explanation. The essence of their approach is
adopted here; however, their results are not directly appli-
cable to covalent solids. Note that the interatomic poten-
tials for diamond are not spherically symmetric as they are
for metals and rare-gas solids, so that our analysis neces-
sarily differs from theirs in this regard.

To separate a diamond crystal along �111�, we can more
or less justify the approach of Harkins. Here, the direction
of the tension is parallel to a bonding direction �111�, and
thus the energy to separate each pair of atoms to infinity
is essentially the radially directed work done (strain is ac-
commodated predominantly by the parallel bonds). How-
ever, to separate the crystal on a �100� plane, for example,
the forces are resolved through an angle of 54.74± onto
the C–C bonds. In the case of �110� the angle is 35.26±.
Thus we can see qualitatively that more energy must be
supplied to break the crystal. This arises from the work
done in bringing the nonbonded atoms closer together and
in rotating the bonds, schematically illustrated in Fig. 1.

To determine the magnitude of this effect we have used
a parameter-free, first principles, quantum mechanical
technique to describe the intrinsic strength of diamond.
The calculations were performed using density functional
theory [16,17] within the plane-wave pseudopotential ap-
proach [18]. In particular, the so-called ultrasoft pseudo-

FIG. 1. Perspective section of diamond crystal schematically
illustrating uniaxial tensions parallel to �100� (in the direction
of a line through points A and B) and �110� (along the zigzag
in the direction CD) clearly showing the tendency for strain
accommodation as the crystal is stretched. The curved lines
indicate the bond-bending tendency for �100� tension.
potentials of Vanderbilt [19] were used to efficiently
describe the electron-ion interaction. The exchange and
correlation energy was evaluated using the local density
approximation with Perdew-Zunger parametrization [20].
The total energy was converged to 0.1 eV per atom, and
the stress [21] to about 5 GPa with respect to changes
in the size of the basis set and quality of Brillouin zone
integration. Appropriate cuboid unit cells were used for
each set of calculations, and the internal coordinates were
fully relaxed for each applied strain (strictly necessary for
the �111� stretch). Poisson contractions were made until
the total energy and the orthogonal components in the
output stress tensor were minimized for a given strain.

The total energies and the uniaxial stresses are plotted as
a function of the applied strain (Fig. 2). The points of in-
flection in the total energy plots correspond to the maxima
in the stress. These maxima are then taken as the lim-
its of crystal cohesion, i.e., the maximum strengths. Fig-
ure 3 illustrates the change in electron distribution caused
by a large uniaxial strain in the �111� direction. It is clear
from Fig. 2 that a strong anisotropy exists in the intrinsic
strength of a diamond crystal. For tension parallel to �100�
the strength and strain to failure are highest, followed by
�110� then �111�. The maximum strengths are 225, 130,
and 90 GPa, respectively.

Using a semiempirical method whereby the stress-strain
relations were found using experimentally determined
elastic constants up to third order in strain, Whitlock
and Ruoff [22] calculated strength values of 98.4, 53.6,
and 52.6 GPa for the �100�, �110�, and �111� directions,
respectively. These values appear to be low given that
experimentally a tensile strength for fracture of 60 GPa
has been recorded at the edge of contact of a 2.5 mm

FIG. 2. Theoretical data for the uniaxial stress (upper curves)
and the total energy per atom (lower curves) plotted as a function
of the uniaxial tensile strain for the �100�, �110�, and �111�
directions.
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FIG. 3. Surface plots of the valence charge density at
1.2 electrons per angstrom3 superimposed onto the diamond
cell stretched in the �111� direction and viewed from the �112�
direction. The strains from equilibrium are 0 in the top picture
and 0.125 in the bottom picture. The charge density between
the atoms is clearly depleted at the larger strain (corresponding
to a point just past the maximum stress) which is consistent
with the covalent bonds having been broken.

radius Hertzian indenter and a diamond flat [23]. Their
predictions may be low as a result of uncertainties in the
values for the elastic constants or due to the absence of
higher-order terms in their calculation (especially given
the magnitudes of the strain). More significantly, they
did not predict a large strength anisotropy in diamond,
particularly, little difference between the �110� and �111�
directions.

It should be pointed out that although �111� cleavage is
by far the most commonly observed fracture plane, �110�
fractures can be observed in diamond. For example, these
have been observed in compressive loading of diamond
grits [24] and also under sharp indentations [25] or blunt
indentations at elevated temperature [26], where shear
stresses and plastic flow are thought to dictate the failure
and the stress fields are inhomogeneous.

For the equilibrium growth of a crack we may, to a first
approximation, equate the stored elastic strain energy up
to the point of fracture with the potential energy of the
two fracture surfaces produced. This energy, proportional
to the area under each of the curves in Fig. 2 and bound
by a vertical line drawn at the appropriate breaking strain,
will more or less determine the propensity for fracture nor-
mal to that direction (strictly, it will be determined by the
given resolved stress and the surface energy related frac-
ture toughness of given planes ahead of the crack tip). We
find the ratio of these energies as approximately 7:2.8:1
for the planes �100�:�110�:�111�, respectively. This com-
pares with the modest ratio 1.73:1.22:1 found using the
method of Harkins. Thus, even when a stress is applied
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uniaxially at a large angle to the �111� we would, on the
basis of our calculations, still expect fracture to proceed
along these “easy cleavage” planes. For example, the far-
thest angle away from �111� to resolve an applied stress
is 54.74±, corresponding to tension applied normally to a
�100� plane. The resolved stress on �111� is then about 0.6
of the stress on �100� and 0.8 of the stress on �110�. These
reductions in stress, however, are insufficient to favor frac-
ture on these other planes given their significantly larger
stresses and energies to fracture. We might expect the en-
suing fracture to be macroscopically parallel to �100� but
composed of stepped �111� surfaces. Experimental studies
[7,27] on apparently noncrystallographic fracture surfaces
in diamond-structure crystals have found that, on a micro-
scopic level, such surfaces are indeed stepped.

We have shown that in diamond the intrinsic strength
varies significantly with the direction of tensile stress ap-
plied to the crystal, despite only a modest variation in
Young’s modulus (using averaged experimental constants
[28,29] we get values of 1050, 1165, and 1207 GPa in
the �100�, �110�, and �111� directions, respectively). The
high resistance of the bonds in diamond to angular dis-
tortion certainly contributes to the macroscopic strength
anisotropy (diamond generally has a very low Poisson ra-
tio: minimum value � 0.007 86 for in-plane �110� strains
arising from a stress applied in a �100� plane, maximum
value � 0.115 for out-of-plane strains in the �110� direc-
tion for stress applied in a �100� plane; the averaged value
over all directions is 0.0691 [30]). This resistance to dis-
tortion can be attributed to the absence of nearby, unfilled
electronic states, thus making distortion of the sp3 hybrid
costly in terms of energy [31].

In conclusion, the dominance of �111� cleavage in the
fracture of diamond is explained by the markedly lower
strength and energy for fracture on these planes. This is
inferred from first principles calculations and also quali-
tatively explained by strain accommodation and the intro-
duction of powerful “bond-bending” energy terms upon
stretching the crystal away from the �111� direction.

This work could be extended to examine the strength
anisotropy of other highly brittle, elastic solids. Of par-
ticular interest would be the case of partially ionic crystals
with the sphaelerite (ZnS) structure, e.g., cubic boron ni-
tride, and whether the shift to �110� cleavage is observed.
Examining the role of common impurities such as hydro-
gen and nitrogen on the mechanical properties of diamond
would also be very informative.
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