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Scattering Theory of Bardeen’s Formalism for Tunneling: New Approach
to Near-Field Microscopy
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We propose a new theoretical approach to near-field microscopy, which allows one to deal with scan-
ning tunneling microscopy and scanning near-field optical microscopy with a unified formalism. Under
the approximation of weak tip-sample coupling, we show that Bardeen’s perturbation formula, originally
derived for electron tunneling, can be derived from a scattering formalism which extends its validity
to electromagnetic vector fields. This result should find broad applications in near-field imaging and
spectroscopy.
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The development of scanning tunneling microscopy
(STM) in the early eighties [1] opened the way to real-
space surface study at the atomic scale. Since then,
various techniques of scanning probe microscopy (SPM)
have been proposed [2,3], based on local interaction
between a sharp tip and the sample under study. Scanning
near-field optical microscopy (SNOM) [4] is one of these
techniques, which uses optical interaction in the visible or
near-infrared range. SNOM has proven its ability to image
optical fields and surface structure at a subwavelength
scale [5]. In the field of microscopy, spectroscopy, and
surface modification on the nanometer scale with visible
or infrared light [6], SNOM looks complementary to other
SPM techniques.

In the context of STM, some theories were developed
shortly after the first experimental demonstrations, based
on self-consistent methods and numerical calculations
[7,8] or on analytical models [9–12]. Many of these
theories [8–10] have in common the use of Bardeen’s
perturbation formula, originally derived for electron
tunneling between two weakly coupled electrodes [13].
In particular, the approach of Tersoff and Hamann [9]
remains an explicit and practical description of the STM.
An important result in this approach was the direct
interpretation of the STM signal as a measurement of the
local electron density of state of the sample. Although
this result is valid under weak tip-sample coupling, it was
a breakthrough in understanding the STM images [2].

Similarly, in the context of SNOM, several theoretical
methods and numerical simulations [14], as well as ana-
lytical models [15,16], have been developed, in order to
improve the capability of the technique and to understand
the measured signals. Although the underlying physics be-
hind SNOM is understood to a certain extent, an overlook
at the current state of SNOM leads to the two following
remarks. (i) The analogy between STM and SNOM is of-
ten qualitatively put forward. In particular, some SNOM
setups such as the photon scanning tunneling microscope
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(PSTM) were introduced by analogy between optical and
electron tunneling [17]. Nevertheless, there is no unified
formalism and theoretical proof of a clear and general anal-
ogy. (ii) An explicit SNOM theory was developed some
years ago [15], which gave an interpretation of the signal
and clarified the role of spatial filtering and polarization
effects. Nevertheless, a general formalism allowing to in-
troduce in a natural way an appropriate tip model seems to
be missing [18].

In this Letter, we propose a new approach to near-field
microscopy which deals with both STM and SNOM with
a unified formalism. We first derive an expression of
the current in the gap [19] which is valid for STM and
SNOM. This expression allows an original discussion of
the tunneling contribution to the SNOM signal. Then,
under the approximation of weak tip-sample coupling,
we derive a general expression of the signal in SNOM,
which generalizes Bardeen’s formula to scattering of vec-
tor electromagnetic fields. This generalization allows one
to deal with SNOM using the standard formalism of STM
modeling.

Let us consider the general SNOM setup depicted in
Fig. 1(a), and the general STM setup in Fig. 1(b). In the
SNOM situation, the tip-sample system is illuminated by
a light source of arbitrary size and state of coherence, and
part of the scattered energy is collected by a detector of
arbitrary shape. The gap region (between the sample and
the tip) is assumed to be vacuum or air. At this stage of
the discussion, we concentrate on the tunneling current in
both STM and SNOM, and we do not take polarization ef-
fects into account. In the STM situation, we assume that
the central part (with respect to the z direction) of the gap
region is of constant potential V . The state of the elec-
tromagnetic field at a given frequency v, or a stationary
state of the electron of energy E, are both represented by
a scalar wave function C�r�. We assume that the tip re-
mains situated above the highest point of the surface to-
pography (although the path followed during the scan may
© 2000 The American Physical Society
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FIG. 1. (a) Scheme of a SNOM setup. Light coming from
the source is scattered towards the detector through near-field
coupling between the tip and the sample. (b) Scheme of a STM
setup. The current is created by tunneling electrons between
the tip and the sample. (c) SNOM setup with hemispherical
detection.

be arbitrary). In the gap region, the wave field can be writ-
ten in the form of an angular spectrum of plane waves [20]:

C�r� �
Z

a�K� exp�iK ? R 1 igz� d2K

1
Z

b�K� exp�iK ? R 2 igz� d2K , (1)

where g�K� �
p

k2 2 K2 for K2 # k2 (homogeneous
or propagating components) and g�K� � i

p
K2 2 k2 for

K2 . k2 (inhomogeneous or evanescent components). We
use the notations r � �x, y, z�, R � �x, y�, and K � jKj.
For the electromagnetic field, k � v�c, c being the speed
of light in vacuum. For the electron wave function, k2 �
2m�h̄2�E 2 V �, where m is the electron mass and h̄ is
Planck’s constant. The integrals are extended to 0 , K ,

1`. Note that, in the case of electron tunneling in STM
(E , V and k2 , 0), the wave function in the gap region
contains evanescent waves only.

The current density associated with the wave function
C is J�r� � A Im�C��r�=C�r��, where Im denotes the
imaginary part and � the complex conjugate. This formula
represents either the momentum density of the electro-
magnetic field in the scalar representation or the proba-
bility current in quantum mechanics [20]. The constant
A may be determined by identifying the current flux at
the detector with either the energy flux of the electromag-
netic field (in the case of SNOM) or the electronic cur-
rent (in the case of STM). Using Eq. (1), the total current
f �

R
Jz�r� d2R across a plane at a constant z in the gap

region (dashed line in Fig. 1) can be cast in the following
form:
f � A
Z

K2#k2
g�ja�K�j2 2 jb�K�j2� d2K

1 A
Z

K2.k2
g�a�K�b��K� 2 a��K�b�K�� d2K .

(2)

Although Eq. (2) simply expresses the total current flow-
ing through the gap region, it was never used before, to
our knowledge, in the context of near-field microscopy. In
STM, except for a constant factor, f is exactly the tun-
neling current which is measured in the experiment. In
SNOM, f is proportional to the total energy flux, includ-
ing the flux flowing through channels that do not end up
at the detector. In many SNOM experiments, only part of
this flux is actually collected and contributes to the signal.
f would be an exact expression of the signal in situa-
tions in which a hemispherical detector is used to col-
lect all the flux traveling in a half space, as shown in
Fig. 1(c). An example of such a configuration is the tun-
neling near-field optical microscope [21] when complete
hemispherical detection is performed, and its reciprocal
setup, namely, a PSTM using hemispherical incoherent il-
lumination [22,23].

Two separate contributions are clearly identified in
Eq. (2). The first integral describes the contribution of
waves that are homogeneous in the gap region. It simply
expresses the balance between two currents flowing in
opposite directions through propagating channels. The
second integral describes a current flowing through
evanescent (or tunneling) channels. In the case of STM,
this is the only contribution to the current. This term
simply reflects the net flux traveling through the tunneling
channel K, and vanishes if a�K� � b�K�. Note that, if
either a�K� or b�K� vanishes, then the contribution of
this tunneling channel also vanishes. This reflects the
fact that tunneling is essentially a consequence of the
presence of two interfaces at close proximity (e.g.,
the sample and the tip). Equation (2) also demonstrates
the existence of an optical tunneling contribution in any
SNOM configuration. Moreover, it shows that the SNOM
current travels through both propagating and tunneling
channels in the gap, whereas in STM the current flows
only through tunneling channels. This is a fundamental
difference between SNOM and STM.

In practice, computing the SNOM or STM signal from
Eq. (2) requires the knowledge of the angular spectra
a�K� and b�K� of the wave function in the gap region.
These are solutions of a difficult scattering problem in a
confined geometry, which can, in general, be solved only
numerically. Nevertheless, under the approximation of
weak tip-sample coupling, it is known in STM modeling
that Bardeen’s formula can be used to describe the tunnel-
ing current [2,8–10]. We shall now give a new derivation
of this formula, based on a scattering formalism. This
approach generalizes Bardeen’s original formula, by
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showing that (i) it describes both the tunneling current and
the current flowing through propagating channels, and
that (ii) it also applies to vector electromagnetic fields.

Let us consider the general SNOM setup depicted in
Fig. 2(a). The illumination is done by a plane wave with
a wave vector Ks, a unit amplitude, and a state of po-
larization described by the complex unit vector as. The
signal is recorded by a detector placed in the far field, in
a direction defined by the wave vector Kd . We assume
that the detection is performed with a polarizer (analyzer)
whose polarization direction is defined by the unit vector
ad . Note that this represents the most general configu-
ration, because an extended and/or unpolarized source or
detector can be described by adding the contributions of
a set of incoming or outgoing plane waves. Depending
on the experimental setup, the summation should be done
with a properly defined degree of coherence and/or polar-
ization [23]. Without loss of generality, we have chosen
the transmission geometry shown in Fig. 2(a), but the ar-
gument can be easily extended to any SNOM setup. Using
a scattering formalism, we describe the sample, the tip,
and the entire setup by their generalized transmission co-
efficients $t s�K, Ks�, $td�Kd , K�, and

$
T �Kd , Ks�. These

coefficients are elements of the scattering matrix of each
system in a plane-wave basis [24]. The signal S is the
flux of the Poynting vector (current density) at the detec-
tor position (i.e., in the far field). The far-field asymptotic
expression of the electromagnetic field in the direction Kd

can be obtained by the stationary-phase technique [20]. In
this condition, the expression of the signal is

S � 2p2e0cg2�Kd� jad ?
$
T �Kd , Ks� ? asj

2. (3)

This result shows that the basic quantity to compute is
Mds � ad ?

$
T �Kd , Ks� ? as, which is analogous to the

elastic tunneling matrix element in Bardeen’s formalism
[13]. We now assume that the coupling between the tip and
the sample is weak. In the scattering picture, this means
that the current in the gap results from fields that have been
scattered once at the tip or at the sample. In this case, the
transmission coefficient of the system is

$
T �Kd , Ks� �

Z
$td�Kd , K� ?

$t s�K, Ks� d2K , (4)

where the integral is extended to both propagating and tun-
neling channels. We see that, in the case of weak coupling,
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FIG. 2. (a) General SNOM setup with directional illumination
and detection. (b) Illustration of the meaning of the sample
wave function Cs. (c) Illustration of the meaning of the tip
wave function Cd .

the signal can be calculated from the transmission coeffi-
cients of the sample and the tip, considered as independent
systems. We will now transform Eq. (4) into an expression
in direct space, involving two wave fields that are solutions
of the two scattering problems in Figs. 2(b) and 2(c). This
will lead to a generalization of Bardeen’s formula to scat-
tering of electromagnetic vector fields. Let Cs�r� be the
(vector) electric field, in the gap region, that results from
scattering of the illuminating plane wave (wave vector Ks,
polarization state as) by the sample, in the absence of the
tip. Let Cd�r� be the (vector) electric field, in the gap re-
gion, that results from scattering by the tip of a plane wave
of amplitude unity coming from the direction of the detec-
tor (wave vector 2Kd , polarization state ad). The explicit
expressions of these wave fields are

Cs�r� �
Z

$t s�K, Ks� ? as exp�iK ? R 1 igz� d2K ,

(5)

Cd�r� �
Z

$td�K,2Kd� ? ad exp�iK ? R 2 igz� d2K ,

(6)

where $td is related to $td by the reciprocity theorem
g�Kd�$td�Kd , K� � g�K�$t T

d �2K, 2Kd�, the super-
script T denoting the transposed tensor [24]. From
Eqs. (4)–(6), one obtains the following expression for the
matrix element Mds:
Mds �
1

8p2ig�Kd�

Z ∑
Cd�r� ?

≠Cs

≠z
�r� 2 Cs�r� ?

≠Cd

≠z
�r�

∏
d2R , (7)
where the integral is performed along a plane at a constant
z in the gap region.

Equation (7) is the main result of this Letter. It is simi-
lar to Bardeen’s formula for the elastic tunneling matrix
element Mmn between a state Cm of the probe and a state
Cn of the sample [see, e.g., Eq. (3) in Ref. [9] ]. Note
that the complex conjugation of the tip wave function Cd

does not appear in Eq. (7). This point is not fundamental.
Bardeen’s formula is exactly retrieved when using a tip
wave function C 0

d � C�
d , namely, the time reversed of

the wave function Cd introduced in Eq. (6). When the
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tip is lossless, this difficulty can be overcome by choos-
ing a real solution for Cd . This is the usual choice that
is made in STM modeling based on Bardeen’s formula
[9,12]. Our formalism clearly demonstrates that the tip
wave function must be chosen as a solution of the scatter-
ing problem in Fig. 2(c), followed by time reversal, for the
integrand in Eq. (7) to take the form of a current operator,
as in Bardeen’s original paper [13]. The general deriva-
tion of Eq. (7) given in this Letter shows that Bardeen’s
formula applies (i) to the general situation where the cur-
rent in the gap flows through both propagating and tun-
neling channels, and (ii) to electromagnetic vector fields.
From a fundamental point of view, this constitutes an im-
portant generalization of Bardeen’s original formula. From
a practical side, Eqs. (3) and (7) provide an expression of
the SNOM signal using the same formalism as in standard
STM modeling [9,10,12]. This unification could greatly
improved the understanding of the SNOM signal.

Finally, let us comment on the choice of the tip wave
field Cd in SNOM modeling. The simplest model could
consider the tip as a small sphere. In this case, it can be
shown [25] that one retrieves the same result as that ob-
tained in Ref. [15]. Except for some polarization effects,
the signal in this model is proportional to jCsj

2 at the lo-
cation of the probe. This is also the result of the Tersoff
and Hamann theory developed for STM [9]. Nevertheless,
recent experimental studies of the apertureless setup have
shown that this model is not sufficient to describe polariza-
tion and spectroscopic effects [18]. A theory including an
appropriate tip model is needed to account for these effects
[26]. The generalized Bardeen formula derived in this Let-
ter provides a natural way to include realistic tip shapes in
SNOM modeling.

In summary, we have presented a new formalism for
near-field microscopy which unifies SNOM and STM. We
have given an explicit expression of the total current in
the gap region, which demonstrates the role of optical
tunneling in SNOM. Under the approximation of weak
tip-sample coupling, we have given a new and general
derivation of Bardeen’s perturbation formula, which ap-
plies to currents flowing through both propagating and tun-
neling channels, and to electromagnetic fields. The results
in this Letter should find broad applications in near-field
imaging and spectroscopy using visible or infrared light.
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