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Condensation of Microturbulence-Generated Shear Flows into Global Modes
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In full flux-surface computer studies of tokamak edge turbulence, a spectrum of shear flows is found
to control the turbulence level and not just the conventional (0,0)-mode flows. Flux tube domains too
small for the large poloidal scale lengths of the continuous spectrum tend to overestimate the flows and
thus underestimate the transport. It is shown analytically and numerically that under certain conditions
dominant (0,0)-mode flows independent of the domain size develop, essentially through an analog of
Bose-Einstein condensation for the shear flows.

PACS numbers: 52.35.Ra, 52.55.Dy, 52.65.Kj
The energy confinement of tokamaks is mainly con-
trolled by small-scale (�cm) turbulence giving rise to the
“anomalous transport.” Analytical and computer-aided
studies have found that the anomalous transport in turn
is often controlled by fluctuating “zonal flows” [1,2],
poloidal shear flows, which are assumed to have zero
poloidal and toroidal mode numbers, but have radial scales
similar to the turbulence. The present paper deals with
the question of what happens to the shear flows when the
turbulence scale lengths become very small compared to
the plasma size such as in the tokamak edge, in particular,
in future large machines. In this limit, the shear flows
either can contain a finite �0, 0�-mode component or may
loose their global character and change into vortices with
finite poloidal scale length, as will be demonstrated by
numerical full flux-surface edge turbulence studies. Re-
garding their large poloidal and parallel but small (similar
to the turbulence) radial scale lengths, these vortices
should not be regarded as drift waves or convective cells
[3] but rather as poloidally localized shear flows.

For cost reasons, the domains of turbulence simula-
tions are usually thin flux tubes [4] or tokamak sectors
[5], equivalent to flux tubes with special boundary condi-
tions. The flux tube dimensions perpendicular to the mag-
netic field are of the order of �10 cm and they extend
several �10 m along the magnetic field to accommodate
the prevalent turbulent structures. For poloidally localized
shear flows, however, these computational domains are not
adequate and the flows always appear to extend across the
complete flux tube. Since the �0, 0� mode is not damped
as the other modes, it may therefore exert a strong stabi-
lizing effect on the turbulence, which underestimates the
transport compared to a true full flux-surface simulation.
For the core turbulence, which has relatively large scales,
full torus simulations [6,7] exhibit zonal flows extending
over the complete flux surfaces. However, even for these
scenarios it is not clear whether this remains true for a
much larger ratio of flux-surface circumference to turbu-
lence scale length or whether the flows have a finite scale
length in the poloidal direction.

Following the numerical results, an analytic model for
the shear flows is described, in which their poloidal and
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radial wave number spectra are controlled by the inter-
play of damping by the collisional electron response and
ion dissipation, the linear response of the turbulence to
the flows, and the excitation of flows by random fluctua-
tions. Under certain conditions, a nonzero fraction of the
flow energy is generated as �0, 0�-mode flows, regardless
of the system size. The mechanism is analogous to the
Bose-Einstein condensation (BEC). The three effects act-
ing on the flows take the role of absorption, stimulated, and
spontaneous emission. For the BEC, a macroscopic frac-
tion of the quanta is eventually scattered into the ground
state because the state density near the ground state is too
low to hold sufficiently many quanta under the prevalent
conditions. For the flow system, the turbulence and shear
flows form a feed back loop, which regulates the shear
flow energy to the level needed for turbulence saturation.
Condensation into the �0, 0� flow component occurs when
a threshold in required flow energy is exceeded, and the
m fi 0 modes are unable to hold it.

Numerical results.—We discuss the results of turbu-
lence simulations of the three dimensional electrostatic
drift Braginskii equations with isothermal electrons (a sub-
set of the equations of Ref. [8]) for two different cases: (a)
the predominant instability is the resistive ballooning mode
with the nondimensional parameters ad � 0.2, en � 0.08,
q � 5, t � 1, hi � 1, ŝ � 1; (b) there is a significant
contribution from ion temperature gradient modes with
ad � 0.4, hi � 3, and the other parameters as in (a). The
radial domain width in terms of the resistive ballooning
scale length, L0, in (a) was 24L0 and in (b) 48L0, the
width Lu perpendicular to r and B was 24L0 [only for
(a)], 192L0, 384L0, and 768L0 [the corresponding toka-
mak minor radius is a � Luq��2p�]. For a definition of
these parameters and units, see Refs. [8,9]. The parame-
ters of the largest domain are consistent with the physi-
cal parameters R � 3 m, a � 1.5 m, Ln � 12 cm, q0 �
3.2, n � 3.5 3 1019 m23, Zeff � 4, B0 � 3.5 T, and for
(a) T � 100 eV, L0 � 5.1 mm, rs � 0.58 mm and for
(b) T � 200 eV, L0 � 3.6 mm, rs � 0.82 mm. The per-
pendicular grid step size was D � 0.19L0 (a) and D �
0.38L0 (b). Parallel to the magnetic field 12 points per
poloidal connection length were sufficient due to the large
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parallel scales of the ballooning modes. The largest runs
had a grid of 128 3 4096 3 12.

The dependence of the average �0, 0� shear flow energy
density on the domain size, Lu , is compared for the two
cases in Fig. 1. In contrast to case (b), the shear flows in
(a) are apparently not condensed into the �0, 0� mode since
its energy density decreases proportional to 1�Lu ~ 1�a,
as is expected when a given shear flow energy density
is distributed equally among an increasingly dense set of
modes.

The ku spectrum of the flow velocity, y � yu � ≠rf,
for the Lu � 768L0 runs [for case (a), see Fig. 2] exhibits
a rise at low ku associated with the shear flows, differ-
ent from the microturbulence fluctuations at ku � 1. The
mean square shear flow amplitude of the m � 0 mode in
cases (a) and (b) is 0.3 and 0.9 times, respectively, the to-
tal mean square shear flow amplitude, suggesting strong
condensation for (b). In both cases, the typical poloidal
scale length of the m fi 0 shear flows is roughly a factor
of 10 greater than the scales of the turbulence. Failure of
the computational domain to accommodate the scales of
the uncondensed shear flows in case (a) results in an over-
estimate of the shear flow amplitude and hence in an un-
derestimate of the anomalous transport. The particle flux
for Lu � Lr � 24L0 was found to be 25% lower than for
Lu � 768L0.

Analytic model.—As the first ingredient of a qualitative
model for the poloidal shear flow spectra, we calculate the
linear dispersion relation for finitely elongated shear flows.
For clarity, in the linear electrostatic vorticity equation
(with the plasma parameters absorbed into the units, see,
e.g., [9]),

=2
��≠t 1 g�f 1 ≠

2
kf � 0 , (1)

we neglect temperature fluctuations, parallel ion velocity,
drift effects, curvature, and magnetic fluctuations. These
effects can lead to a real frequency (e.g., geodesic acous-

FIG. 1. �0, 0� shear flow energy density as a function of
poloidal domain size Lu for case (a) (solid line) without con-
densation and case (b) (dashed line) exhibiting condensation;
the thin line is proportional to 1�Lu .
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tic modes [10,11]) and to a coupling to parallel sound
waves or Alfvén waves. The dissipative effects are the flow
damping g due to the ion dissipation assumed independent
of the wave number and the damping due to the resistive
electron response. As we will see below, for a potential
condensation of the shear flows into global modes only
a small region around a certain radial wave number, k0,
is important, which we set to one in (1) since its absolute
value is not important. Because of the large poloidal wave-
lengths of the flows, we approximate 2=

2
� � k2

0 � 1 and
obtain the dispersion relation

vlin � 2i�g 1 k2
k�, kk �

µ
m

q�r�
2 n

∂
. (2)

The damping by the parallel resistive electron response
is weak if either m � n � 0 holds or r is near a reso-
nant surface defined by m 2 nq�rmn� � 0. Focusing on a
thin region around r � r0 we obtain kk � ma0�r 2 rmn�,
a0 � 2q0�r0��q�r0�2. Hence the resistive flow damping
is proportional to m2, which is the reason for the poloidal
elongation of the flows, i.e., their low mode numbers.

As reaction to a shear flow [1,2,12,13] the microturbu-
lence may in turn influence the flows via the Reynolds
stress [14,15] or the Stringer-Winsor mechanism due to
poloidal pressure asymmetries [10,16]. Restricting our-
selves to linear response theory, we assume a (coherent)
flow amplification rate g�kr� depending only on the radial
wave number kr , because of the large poloidal correlation
lengths of the shear flows. With the (incoherent) random
forcing, f, representing the effect of the turbulence fluc-
tuations, the equation for the flow amplitude in frequency
space has the form of a Langevin equation,

≠ty � 2ivliny 1 g�kr�y 1 f . (3)

From (3) we obtain a relation between the mean square
spectra of the flows and the forcing in frequency space,

FIG. 2. Mean square shear flow amplitude as a function of ku

for case (a) for Lu � 768L0. Note the greatly different scale
lengths of the turbulence (ku . 0.3L21

0 ) and the shear flows
(ku , 0.3L21

0 ).
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jŷj2 �
j f̂j2

v2 1 �2ivlin 1 g�kr��2 . (4)

Assuming that j f̂j2 is independent of k, v (white noise),
the integration of (4) over v yields the relation between the
mean square flow amplitude at an instant of time and the
forcing,

jyj2 �
j f̂j2p

j2ivlin 1 g�kr�j
. (5)

The flow intensity (5) replaces the Bose distribution in the
BEC case. Both functions tend to infinity when the ampli-
fication (stimulated emission) terms approach the damping
(absorption) terms. As long as every mode is net-damped
at a rate independent of the system size, the energy den-
sity stored in (0, 0) modes must decrease proportional to
the system size, since the total shear flow energy is dis-
tributed among an increasingly dense set of modes. How-
ever, analogous to the thermodynamic theory of the BEC,
when the continuous flow spectrum is unable to hold the
shear flow energy for the nonzero minimum net-damping
rate and given random forcing, the nonlinear flow ampli-
fication term must adjust so that the remaining part of the
flow energy is excited in the form of the most weakly
damped modes, which are (0, 0) modes. Hence, to demon-
strate the possibility of condensation, it has to be shown
that the flow amplitude in m fi 0 modes stays finite when
the net-damping rate of the m � 0 modes tends to zero,
in the limit of infinite system size or, equivalently, in the
approximation of a continuous poloidal mode spectrum.

It is sufficiently general to assume that g�kr� has a
maximum at kr � k0 of order of the turbulence wave
numbers and is parabolic near that maximum, g�kr� �
g0 2 g1�kr 2 k0�2. The amplification terms will nearly
cancel the damping terms only for wave numbers near
k0, which justifies the approximation kr � k0 which was
made in the derivation of (2). For the following analysis
we shift the kr spectrum of the flows so that k0 � 0. With
ikr � ≠r , the operator in the denominator of (5),

�g 2 g0� 2 g1≠2
r 1 �ma0�r 2 rmn��2, (6)

is the quantum mechanical Hamiltonian of the harmonic
oscillator. Its eigenvalue for a mode with the “quantum
numbers” �m, rmn, l�, l [ �0, 1, 2, . . .	 is

vl � g 2 g0 1 2
p

g1 ja0mj �l 1 1�2� .

The sum over l of the eigenmode contributions to (5) at
fixed �m, rmn� results in a logarithmic divergence, which
stems from the infinitely broad random forcing spectrum
and infinitely fast turbulence response. Hence, we cut
off vl at an appropriate vc depending on the turbulence.
The sum is then approximated by an integral over l. The
resulting amplitude associated with each pair �m, rmn� is
jyj2�m, rmn� �
jf̂j2p

2
p

g1 ja0mj
ln

vc

v0
(7)

with v0 � g 2 g0 1
p

g1 ja0mj , vc. The density of
rational surfaces is ja0mj for given m. Approximating the
sum over all jyj2�m, rmn� contributions to (5) with m fi 0
by an integral (which becomes exact for infinite system
size), the total instantaneous energy density of the flow
modes with m fi 0,

jyj2mfi0 �
Z mc

2mc

ja0mj jyj2�m, rmn� dm , (8)

is obtained, where the integration interval is limited by
the cutoff mc defined by v0�m � mc� � vc. With the
minimum net-damping rate V � v0�m � 0� � g 2 g0
we obtain

jyj2mfi0 �
pj f̂j2

2ja0jg1

∑
vc 2 V

µ
1 1 ln

vc

V

∂∏
. (9)

This expression converges to a finite value for V ! 0. On
the other hand, because the energy density of the m � 0
modes, which tends to infinity for V ! 0 [the integral
over kr of (5) does not exist for 2ivlin 1 g0 � 0], has
to be finite, we always have V . 0. If the turbulence
saturation requires a higher flow level than (9) at V ! 0,
the description of the system by a continuum of poloidal
mode numbers breaks down, the flow energy which can not
be received by the m fi 0 modes condenses into m � 0
modes, and simultaneously V ! 0.

In a similar manner, it can be shown that in the limit of
infinite system size the m � 0 condensate is completely
contained in the n � 0 modes. Furthermore, there is no
condensation of the radial wave numbers but the kr spec-
trum becomes arbitarily narrow around the point of weak-
est net-damping for large system size.

Strictly speaking, condensation is unprovable by numer-
ical studies, due to the restriction to finite system sizes.
However, the validity of the individual parts of the model
can be checked in the simulations. The localization of the
m fi 0 shear flows on resonant surfaces is obvious in a
plot of the flow spectra versus radius (Fig. 3). The to-
tal flow amplitude associated with each �m, rmn� quantum
number in Eq. (7) (Fig. 4) has a much weaker slope than
k22

u ~ m22 for ku , m ! 0. Therefore the integral over
all m fi 0 shear flows (8) is expected to be finite in the
limit of infinite system size [even if the estimate (7) for
the individual amplitudes should be quantitatively wrong].
Furthermore, the integral is reasonably well approximated
by the corresponding sum in the finite system. Conse-
quently, the infinite system will have approximately the
same ratio of m � 0 flow amplitude to m fi 0 flow am-
plitude. Finally, we note that the numerical studies agree
with the above analytical prediction, that the flow conden-
sate exhibits a strong peaking in kr for a sufficiently large
system size.

Conclusions and consequences.—It has been shown nu-
merically that in general the shear flows controlling the
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FIG. 3. Mean square shear flow amplitude as a function of
ku and radius x � r 2 r0 for case (b) for Lu � 768L0. Note
the localization of ku fi 0 flows on resonant surfaces. The
resonances lie on the intersections of families of hyperbolas in
the x 3 ku plane, some examples of which are displayed.

turbulence are not only �0, 0� modes but rather consist of a
spectrum of poloidal mode numbers. The �m, n� fi �0, 0�
flows differ from drift waves or convective cells by their
large poloidal [10 times larger than the turbulence (Fig. 2)]
and parallel scale length, while their perpendicular scale
length is similar to that of the turbulence. These shear
flows are localized in the vicinity of resonant surfaces
(Fig. 3). In the limit of large system size, a nonzero
(0, 0)-mode amplitude develops only if the shear flows un-
dergo a condensation into these modes, analogous to the
Bose-Einstein condensation. Several features predicted by
the analytic model have been reproduced by the numerical
simulations.

Because of the canceling of damping and amplification
terms, the �0, 0� flow condensate is practically undamped.
This means in quantum mechanical language that the rate
of absorption and incoherent re-emission, the “collision”
rate, vanishes. Hence, far ranging interactions or ordering
effects might be mediated via the shear flow condensate
(but not by the uncondensed flows that suffer collisions and
are pinned to resonant surfaces). As a consequence in the
simple system used here the kr spectra become arbitrarily
narrow.

Since the flows depend on the distribution of rational
surfaces and mode numbers to accurately model the shear
flow system in numerical studies, care has to be taken not
to introduce spurious resonant surfaces or modes, e.g., by
parallel extension of the flux tube [4,5]. Remarkably, it
can be shown that increasing the flux tube length does not
lead to the correct limit of large system sizes, since, e.g.,
for an infinitely long flux tube, condensation into �0, 0�
modes cannot occur.

Up to now, in flux tube based turbulence computations
the shear flows were implicitly assumed to be global
modes. With domain widths too small for the large
poloidal scales of the continuous part of the flow spec-
trum, the flows appear to have zero poloidal and toroidal
5148
FIG. 4. Mean square shear flow amplitude on a single resonant
surface multiplied with ku ~ m for case (b) for Lu � 768L0.
The thin lines are proportional to k21

u (steeper curve) and k20.3
u

(flatter curve).

mode numbers. Such modes do not experience the resis-
tive damping, which would reduce the flow amplitude in
a full system. Hence, the simulations tend to overestimate
the total flow amplitude, which may therefore exert a
strong stabilizing effect on the turbulence. To avoid an
underestimate of the transport, flux tube simulations have
to be checked for influences of a finite poloidal scale
length of the flows.

The author thanks Dr. D. Biskamp for valuable discus-
sions. This work has been performed under the auspices
of the Center for Interdisciplinary Plasma Science, a joint
initiative by the Max-Planck-Institutes for Plasma Physics
and for Extraterrestrial Physics.

[1] P. H. Diamond and M. N. Rosenbluth et al., IAEA-CN-69/
TH3/1, in Proceedings of the 17th IAEA Fusion Energy
Conference, 1998.

[2] K. H. Burrell, Phys. Plasmas 4, 1499 (1997).
[3] V. B. Lebedev et al., Phys. Plasmas 2, 4420 (1995).
[4] M. A. Beer, S. C. Cowley, and G. W. Hammett, Phys. Plas-

mas 2, 2687 (1995).
[5] B. Scott, Phys. Plasmas 5, 2334 (1998).
[6] Z. Lin et al., Science 281, 1835 (1998).
[7] R. D. Sydora et al., Plasma Phys. Controlled Fusion 38,

A281 (1996).
[8] B. N. Rogers et al., Phys. Rev. Lett. 81, 4396 (1998).
[9] P. N. Guzdar et al., Phys. Fluids B 5, 3712 (1993).

[10] N. Winsor et al., Phys. Fluids 11, 2448 (1968).
[11] S. V. Novakovskii et al., Phys. Plasmas 4, 4272 (1997).
[12] K. L. Sidikman et al., Phys. Plasmas 1, 1142 (1994).
[13] A. S. Ware et al., Phys. Plasmas 5, 173 (1998).
[14] A. V. Chechkin, M. I. Kopp, and V. V. Yanovsky et al., Zh.

Eksp. Teor. Fiz. 113, 646 (1998) [Sov. Phys. JETP 86, 357
(1998)].

[15] A. V. Gruzinov et al., Phys. Plasmas 1, 3148 (1994).
[16] A. B. Hassam et al., Phys. Rev. Lett. 66, 309 (1991).


