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Stokes Formula and Density Perturbances for Driven Tracer Diffusion
in an Adsorbed Monolayer
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We study the intrinsic friction of monolayers adsorbed on solid surfaces from a gas phase or vapor.
Within the framework of the Langmuir model of delocalized adsorption, we calculate the resistance
offered by the mobile adsorbate’s particles to some impure tracer molecule, whose diffusive random
motion is biased by a constant external force. We find that for sufficiently small driving forces the force
exerted on the tracer shows viscouslike behavior. We derive then the analog of the Stokes formula for
two-dimensional adsorbates, calculate the corresponding friction coefficient, and determine the stationary
particle distribution in the monolayer as seen from the driven impurity.

PACS numbers: 66.30.Lw, 05.40.–a, 68.45.Da
When an ambient gas phase or vapor is brought in con-
tact with a solid, some portion of it becomes reversibly
attached to the solid surface in the form of an adsorbed
layer. Such layers are important for various technological
and material processing operations, including, for instance,
coating, gluing, or lubrication.

Following the work of Langmuir, equilibrium proper-
ties of the adsorbates have been extensively studied and a
number of significant developments have been made [1].
As well, some approximate results have been obtained for
both dynamics of an isolated adatom on a corrugated sur-
face and collective diffusion, describing spreading of the
macroscopic density fluctuations in interacting adsorbates
being in contact with the vapor [2,3].

Another important aspect of dynamical behavior con-
cerns tracer diffusion in adsorbates, which is observed ex-
perimentally in scanning tunneling microscopy or field ion
measurements and provides a useful information about ad-
sorbate’s intrinsic friction. In this regard, analysis of tracer
diffusion is not only a challenging question in its own right
but is also crucial for the understanding of various dynami-
cal processes taking place on solid surfaces. To name but a
few, we mention spreading of molecular films on solid sur-
faces [4], spontaneous or forced dewetting of monolayers
[5], or island formation [6]. However, apart from a slightly
artificial 1D model [7], available studies of tracer diffusion
in adsorbed layers focus on strictly two-dimensional (2D)
situations (see, e.g., Refs. [8–10]), excluding the possibil-
ity of particle exchanges with the vapor.

In this Letter we present first results on intrinsic friction
in 2D adsorbed monolayers composed of mobile particles
undergoing continuous exchanges with the vapor phase.
The system we consider here corresponds to the general-
ized Langmuir model of adsorption with adsorbate lateral
diffusion [1] and consists of three key ingredients: (i) a
solid surface containing some concentration of adsorption
sites, (ii) a vapor phase, and (iii) a monolayer of adsorbed
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hard-core particles, which perform activated random mo-
tion between the adsorption sites subject to the hard-core
exclusion interactions (one particle per adsorption site at
most), and undergo continuous exchanges (desorption/ad-
sorption) with the vapor phase (Fig. 1).

To determine the intrinsic friction of such an adsorbate
we wish to probe the resistance offered by the monolayer
particles to some external perturbance. To this purpose,
we add an extra hard-core particle—a tracer, which may
move along the surface only and cannot desorb. Next, we
suppose that the tracer is subject to an external force F,
which favors its motion in the preferential direction such
that it ultimately attains a constant velocity V . Our aim
is then to evaluate the velocity-force relation V �F� in the
limit of small F and to determine the stationary particle
distribution in the perturbed monolayer. General results
for arbitrary F will be presented elsewhere.

FIG. 1. Adsorbed monolayer in contact with a vapor. Grey
spheres denote the monolayer (vapor) particles; the smaller black
sphere stands for the driven tracer particle.
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More precisely, our model is defined as follows (Fig. 1):
We suppose first that the adsorption sites form a regular
2D square lattice of spacing s. Occupation of the lattice
sites is characterized by the set of time-dependent variables
h�r , �r being the lattice vector of the site with Cartesian
coordinates �x, y�; h�r equals 1 if the site �r is occupied by
an adsorbed particle and zero otherwise.

Next, we suppose that the particles from the vapor, (con-
sidered as a reservoir, which is maintained at a constant
pressure), may adsorb onto any vacant lattice site at a
fixed rate f�t�. Then, the adsorbed particles may move
randomly by hopping with a rate l�4t� to any of four
neighboring lattice sites, which process is constrained by
hard-core exclusion preventing multiple occupancy of any
site, or desorb from the lattice at a site- and environment-
independent rate g�t�. For simplicity of exposition, we as-
sumed here that typical adsorption, desorption, and jump
times are equal to each other; these times, i.e., tad, tdes,
and tjump , respectively, can be readily restored in our fi-
nal results by the mere replacement f ! t�f�tad, g !
t�g�tdes, and l ! lt��tjump .

The tracer particle is initially put at the lattice origin.
We stipulate that only this particle is not allowed to desorb
and in addition to random thermal forces experiences an
action of a uniform external force �F � �F, 0�. Dynamics
of the tracer is then defined via standard rules [11]: the
tracer, which is at the site �R, �R � �X, Y �, at time t, waits
an exponentially distributed time with mean t (which is in
the general case different from t�), and then attempts to
hop onto one of the neighboring sites, �R0, with probability
p� �R j �R0�, defined as

p� �R j �R0� � exp

"
b

2
� �F �en�
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m

exp

"
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2
� �F �em�

#
,

(1)
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where �en � �R0 2 �R, n, m � 1, 2, . . . , z, z being the co-
ordination number of the lattice, while b is the reciprocal
temperature. The hop is fulfilled only if the target site ap-
pears to be vacant; otherwise, the tracer remains at �R.

Now, several comments are in order. First, we note
that particles diffusion does not matter in the case when
the tracer and the interparticle attractive interactions are
absent; here, the monolayer is homogeneous and the lo-
cal occupation variables tend as t ! ` to the same value
rL � 1��1 1 g�f�, the latter relation being the Lang-
muir adsorption isotherm [1]. In the presence of an im-
pure molecule, whose hopping rates differ from that of
the monolayer particles, particles diffusion is significant
and couples effectively the occupation variables of differ-
ent lattice sites. This results, as we proceed to show, in
the appearence of rather complex density profiles. Sec-
ond, we remark that in the model under study the number
of adsorbed particles is not explicitly conserved. The con-
served particles number (CPN) limit can be achieved in
the stationary regime by setting f and g to zero, while
keeping their ratio fixed, f�g � rL��1 2 rL�. This limit
corresponds to standard models of tracer diffusion in 2D
hard-core lattice gases. Last, we remark that our model
can be thought of as a certain generalization of a model
for dynamic percolation proposed in [12].

Let P� �R, h� denote the probability of finding at time t
the tracer at the site �R and all adsorbed particles in the con-
figuration h � �h�r�. Furthermore, let h �r,n denote the con-
figuration obtained from h by the Kawasaki-type exchange
of the occupation variables of the two neighboring sites �r
and �r 1 �en , and let h̃ �r be the configuration obtained from
h by the replacement h�r ! 1 2 h�r , which corresponds to
the Glauber-type flip of the occupation variable due to the
adsorption/desorption events. Then, counting up all events
which can result in the configuration � �R, h� at time t or
modify it, we write down the following master equation:
≠tP� �R, h� �
1
t

X
n

� p�0 j �en�P� �R 2 �en , h� �1 2 h �R� 2 p�0 j �en�P� �R, h� �1 2 h �R1�en
��

1
l

4t�

X
�r ,n

�P� �R, h �r,n� 2 P� �R, h�� 1
g
t�

X
�r

��1 2 h�r�P� �R, h̃ �r � 2 h�rP� �R, h��

1
f
t�

X
�r

�h�rP� �R, h̃ �r � 2 �1 2 h�r �P� �R, h�� , (2)
where the symbol �r under the summation sign means that
the sum runs over all the lattice sites.

Now, we are in position to obtain the X component of
the tracer velocity V . Multiplying both sides of Eq. (2) by
X and summing over all � �R, h�, we have

VX �
s

t
� p���0 j �s, 0���� �1 2 k�s, 0�� 2 p���0 j �2s, 0����

3 �1 2 k�2s, 0���, k� �l� �
X
�R,h

h �R1 �l, P� �R, h� ,
(3)

where k� �l� is the probability of having at time t an ad-
sorbed particle at position �l � �lx , ly�, defined in the
frame of reference moving with the tracer particle. In other
words, k� �l� is the density profile as seen from the tracer.
Consequently, VX depends on the particle density in the
immediate vicinity of the tracer. Note that if the mono-
layer is perfectly stirred, i.e., k� �l� � rL (which implies
decoupling of the occupation variables), we would ob-
tain from Eq. (3) a trivial mean-field result VX � V0 �
s� p 2 q� �1 2 rL��t, which states that the tracer jump
time t gets merely renormalized by a factor �1 2 rL�21,
i.e., the frequency of successful jump events. However, this
is not the case and k� �l� fi rL, except for jlj ! `. More-
over, k� �l� is a complicated function of VX , and Eq. (3) is
strongly nonlinear.

Equations describing the time evolution of k� �l� can be
found from (2) by multiplying both sides of it by h �R1 �l
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and summing over all configurations � �R, h�. In doing so,
we find that these equations are not closed with respect to
k� �l�, but are coupled to the third-order correlations,

T � �l, �en� �
X
�R,h

h �R1 �lh �R1�en
P� �R, h� . (4)

In turn, if we proceed further to the third-order correla-
tions, we find that these are coupled, respectively, to the
fourth-order correlations. Consequently, in order to com-
pute VX , one faces the problem of solving an infinite hi-
erarchy of coupled equations for the correlation functions.
Here we resort to the simplest nontrivial closure of the hi-
erarchy in terms of k� �l� representing T � �l, �en� as

T � �l, �en� �
X
�R,h

h �R1 �lP� �R, h�
X
�R,h

h�en
P� �R, h� . (5)

We hasten to remark that the decoupling in Eq. (5) pro-
vides exact results for the analogous 1D model in the CPN
limit [13,14] and serves as a very good approximation for
the 1D model with a reservoir [7]. We set out to show in
what follows that in the CPN limit our results reproduce
exactly the classic results of Nakazato and Kitahara [9],
which are exact for rL ø 1 or rL � 1, and serve as a very
good approximation for any intermediate rL [8]. Since
adsorption/desorption processes are essentially linear,
we expect that such a closure will provide an accurate
description for arbitrary f and g.

Employing the approximation in Eq. (5), we obtain for
k� �l� the following closed evolution equations:
≠tk� �l� � L̃k� �l� 1
f
t�

,

L̃ 	
l

4t�
D 2

f 1 g
t�

1
1
t

X
n

p�0 j �en� �1 2 k��en��=�en
, (6)
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Equation (6) holds for any site �l, except for the four sites
in the immediate vicinity of the tracer: k� �l� at these four
neighboring sites is essentially perturbed due to the asym-
metric hopping rules of the tracer and obeys
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Note that Eqs. (6)–(8) constitute a closed system of equa-
tions, which suffice in principle the computation of the
density profiles and of the tracer velocity. However, these
equations are nonlinear, since k��en� enters the prefactor
before the gradient terms, which makes such a computa-
tion to be a nontrivial problem. Below we consider the
stationary solution of Eqs. (6) and (8).

Solution of Eqs. (6)–(8) in the limit t ! ` can be read-
ily obtained by applying the generating function approach
and reads
k� �l� � rL 1
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and

j� �k� �

p
As,0A2s,0 cos�skx� 1 A0,s cos�sky�p

As,0A2s,0 1 A0,s
. (11)

Last, we have to determine four particular values k��en�
which appear on the right-hand side of Eq. (9). This can be
done by setting �l � �en , n � 1, 2, . . . , z, to the left-hand
side of Eq. (9) and solving the resulting system of four
linear equations. In doing so, we define k��en� explicitly,
as functions of VX and of the characteristic parameters.

Consider now the behavior of the tracer velocity VX in
the limit sbF ø 1. First, we have from Eq. (3) that

VX �
s

4t
�bsF�1 2 rL� 2 dk� , (12)

where dk 	 k�s, 0� 2 k�2s, 0� denotes the density jump
in the vicinity of the tracer. Note that since dk . 0, the
tracer velocity VX is always smaller than the mean-field
prediction V0. Next, from Eqs. (9)–(11) we find
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In�w� being the modified Bessel function of order n.
Consequently, we find from Eq. (12) that in the limit

sbF ø 1 the force-velocity relation attains the physi-
cally revealing form of the Stokes formula, i.e., F � zVX ,
which signifies that the friction force exerted by the mono-
layer particles on the driven tracer is viscous. The corre-
sponding friction coefficient z is given by

z � z0 1 zcoop , (14)
513
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where z0 � 4t�s2b�1 2 rL� and zcoop follows

zcoop � z0
�dk�sbF�

1 2 rL 2 �dk�sbF�
, (15)

�dk�sbF� being defined in Eq. (13). While z0 is the typi-
cal mean-field-type result [see the discussion following
Eq. (3)], the second term is associated with the cooperative
behavior: dehomogenization of the monolayer by driven
impure molecule and formation of stationary density pro-
files, whose characteristic parameters depend on the ve-
locity VX . This second term can be small when either
rL ø 1, or t� ! 0 (perfect mixing) but dominates the
overall friction for any intermediate values of systems pa-
rameters. We finally remark that in the CPN limit Eq. (14)
reduces to the classical result obtained in [9].

Last, we discuss the characteristic features of the mono-
layer density profiles as seen from the stationary moving
tracer, Eq. (9), at large distances in front of and past the
tracer. It follows from Eq. (9) that in the limit jlxj ! `,
(ly � 0) the density profiles obey

k�lx , 0� � rL 6
dk
2

√
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6
jlxj

s
ln�z6�

!
,

(16)

where the sign “1” (“2”) corresponds to the domain lx .

0 (lx , 0), while z6 are two of four eigenvalues of the
operator L̃ in Eq. (6), which are given by
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Hence, in the domain lx . 0 the monolayer density is
higher than rL, which means that there is a “traffic jam”-
type region in front of the tracer, which impedes its motion.
This region decays exponentially with the distance. In
turn, past the tracer there is an exponentially decaying
depleted region in which the density is lower than rL;
since z2 , z1, the depleted region is more extended in
space than the condensed one in front of the tracer, such
that the density profiles are asymmetric with respect to
lx � 0. It is interesting to note that for k� �l� as in Eq. (9)
the sum

P
�l�k� �l� 2 rL� 	 0, which means that the tracer

does not perturb the global balance between adsorption and
desorption. This is not, however, an a priori evident result
in view of the asymmetry of the density profiles.

The salient feature of the behavior past the tracer is that
in the CPN limit z2 	 1 at any fixed F, which signals that
Eq. (16) is no longer valid and correlations get somewhat
stronger. Indeed, we find that

k�lx , 0� 2 rL � 2const 3 jlxj
23�2, lx ! 2` ;

(18)
i.e., the correlations fall off with the distance as a power
law. Remarkably, this implies that in the CPN limit the
mixing of the monolayer is not at all efficient and there
are considerable memory effects— the host medium re-
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members the passage of the tracer on a large space and
time scales. This situation can be realized experimentally
for ultrathin liquid films confined in narrow slits between
solid surfaces, e.g., in boundary lubrication. We note also
that the power-law behavior in Eq. (18) can be observed
as an intermediate scale decay for adsorbed layers exposed
to a low vapor pressure.

To conclude, we have studied analytically the intrin-
sic frictional properties of 2D adsorbed monolayers, com-
posed of mobile hard-core particles undergoing continuous
exchange with the vapor. By analyzing the force-veloc-
ity relation of a driven impure molecule—a tracer, which
is designed to probe the resistance offered by adsorbate
particles to the external perturbance, we have derived the
analog of the Stokes formula for 2D mobile adsorbates
and calculated explicitly the corresponding friction coeffi-
cient. Besides, we have determined the stationary density
profiles, which emerge in the adsorbate in response to the
presence of a driven impurity, as well as obtained explicit
results for both the density jump in the immediate vicin-
ity of the tracer and the asymptotical density relaxation at
large separations from it.
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