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We establish the equivalence of 2D contour dynamics to the dispersionless limit of the integrable
Toda hierarchy constrained by a string equation. Remarkably, the same hierarchy underlies 2D quantum
gravity.
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Laplacian growth.—Contour dynamics takes place in
many physical processes, where an interface moves be-
tween two immiscible phases. The key example of inter-
face dynamics to illustrate the main result of this work is
the Laplacian growth (LG) [1]. This process is dissipa-
tive, unstable, ubiquitous (applications range from oil/gas
recovery to tumor growth), and universal: a steady self-
similar pattern appears governed by scaling laws, most of
which are yet to be derived [1,2].

In this paper we show that an arbitrary interface dynam-
ics has an integrable structure which is the same as the one
that underlies models of 2D quantum gravity. This struc-
ture links the interface dynamics, and especially LG, with
other branches of theoretical physics, where scaling laws
are also expected [3].

To be specific, we will speak about Hele-Shaw flow [1]:
a viscous fluid (oil) and a nonviscous fluid (water) are
confined in a narrow gap between two parallel plates. The
interior water domain, D1, is surrounded by an exterior
oil domain, D2, occupying the rest of the plane. Water is
supplied from the origin and pushes the oil/water interface,
C �t�. Both liquids are incompressible, so oil is extracted at
infinity at the same rate q as water is supplied: The normal
velocity of the interface is Vn � 2≠np (the D’Arcy law);
the pressure p is kept constant (p � 0) inside the water
domain D1�t� and on the interface (surface tension and
viscosity of the water are neglected); and pressure is a
harmonic function, =2p � 0, inside the oil domain D2�t�,
while p ! 2�q�2p� log

p
x2 1 y2 at infinity.

This (idealized) LG problem has an important prop-
erty: The harmonic moments of the oil domain Ck �
2

R
D2�t� z

2kdx dy (k � 1, 2, . . . and z � x 1 iy) (C1 and
C2 are finite: the divergence as jzj ! ` cancels by inte-
gration over argz) do not change in time, while the area of
water domain grows linearly in time [4]. The proof:
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dCk
dt

�
I
C �t�

VndC
zk

� 2
I
C �t�

�z2k≠np 2 p≠nz
2k� dC ,

because Vn � 2≠np and p � 0 along the C �t�. By virtue
of the Gauss theorem, it equals

Z
D2�t�

=�z2k=p 2 p=z2k�dx dy � qdk,0 .

This property may be used as the definition of the idealized
LG problem: to find the form of the domain whose area
increases while all harmonic moments remain fixed.

This problem is known to be ill defined [1]. For al-
most all sets of harmonic moments, the boundary devel-
ops cusplike singularities in finite time (area) [1]. Once
a singularity occurs, the idealized LG model is no longer
valid. Surface tension, omitted above, stabilizes the growth
and simultaneously ruins the conservation of harmonic mo-
ments. Simulations and experiments show that different
mechanisms of regularization of singularities (surface ten-
sion, lattice, etc.) exhibit the same self-similar pattern
[1,2]. This suggests a fixed point (or points) in the space of
harmonic moments, which correspond to observed stable
patterns. To identify the fixed points and their scaling prop-
erties is the challenge of the growth phenomena. The ap-
proach to a fixed point requires a change of all moments.
This is the question we address in this paper.

We present the set of differential equations which de-
scribe the evolution of the domain under a variation of all
harmonic moments. This prompts to a connection with
the inverse potential problem [5]: to restore the shape of a
body from a given Newtonian potential of a uniform mass
distribution inside the body.
© 2000 The American Physical Society
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It remains to be seen whether these equations help to
describe the pattern of growth, however, they reveal the
integrable structure of the growth problems. We will show
that the equations describing the evolution of a domain
form an integrable hierarchy. Moreover, the very same
hierarchy emerges in c � 1 string theory and topological
gravity [6], and in 2-matrix models [7]. It is the disper-
sionless limit of the 2D Toda hierarchy [8] constrained by
the so-called string equation [9].

To proceed further we need some known facts about the
Schwarz function (see, e.g., [10]). An equation for a curve,
FC �x, y� � FC � z1z̄2 , z2z̄2i � � 0, can be resolved (at least
locally) with respect to one of the complex variables, say
z̄ � x 2 iy. The result, z̄ � S�z�, is called the Schwarz
function of the curve C : (a) S�z� is a unitary operation,
S̄�S�z�� � z. (b) The unit vector tangential to the curve
is dz�dl � dz�

p
dzdz̄ � �dz̄�z��dz�21�2 � 1�

p
Sz �p

S̄z̄ . (c) For simple analytic curves, the Schwarz function
can be analytically continued to some striplike domain
containing the curve.

The function S�z� can be decomposed into a sum of
two functions S�6��z� that are regular in D6: S�z� �
S�1��z� 1 S�2��z�. Under the condition S�2��`� � 0 this
decomposition is unique. The functions S�6��z� can be
represented by a Taylor series convergent near the origin
(which is assumed to be in D1) and near infinity in D2:
S�1��z� �

P
`
k�0 Skz

k , S�2��z� �
P

`
k�1 S2kz2k . The co-

efficients S6k are nothing but harmonic moments of the
exterior, D2, and the interior, D1, domains:

C6k � 7
Z
D7

z7k dx dy �
I
C �t�

S�z�dz
2iz6k

� pS6k21 .

(1)

In other words, S�6��z� is the gradient of the Newtonian
potential created by matter uniformly distributed in the in-
terior (exterior) of C . In these terms the idealized LG prob-
lem implies that S�1� does not vary in time and pS21 �
�area of D1� grows linearly in time.

The Schwarz function is closely related to conformal
maps. Let f�x,y� be the function harmonically conjugate
to 2pp�x, y��q. Then w � e22pp�q1if univalently maps
the oil domain to the exterior of the unit circle. This map
sends w � ` to z � `. Let us write

z�t,w� � r�t�w 1
X̀
k�0

uk�t�w2k (2)
for the inverse map, where r is chosen to be real, so the
map z�w� is unique. This map and the map to the complex
conjugate domain D̄2,

z̄�t,w21� � r�t�w21 1
X̀
k�0

ūk�t�wk , (3)

resolve the unitary condition for the Schwarz function and
give it the following interpretation. If w is the image of
a point z, then S�z� is the complex conjugate preimage of
w21: S�z� � z̄���w21�z����.

The idealized LG problem has an instructive form in
terms of the Schwarz function:

≠tS �
q
p

≠z logw . (4)

To derive (4) (following [11]), we differentiate z̄�t,w21� �
S���t, z�t,w����. We get ≠t z̄�t,w21� � ≠tS�t, z� 1 ≠zS�t, z� 3

≠tz�t,w� and, by virtue of (b), Vn � Im�z̄tzl� �
St��2i

p
Sz �. From logw�z� � 22pp�x, y��q 1 if�x,y�

and p � const along C �t�, we conclude that 2≠np �
qwz��2piw

p
Sz �. Since Vn � 2≠np, we obtain (4).

From now on we set q � p by making a proper time
rescaling.

Equation (4) written in terms of the conformal maps (2)
and (3) has the form [1]

�z�t,w�, z̄�t,w21�� � 1 , (5)

where we define the Poisson bracket by � f, g� �
w�≠wf≠tg 2 ≠tf≠wg�. On comparing powers of w for
both sides of (5), we get a set of equations for the coeffi-
cients uk , ūk of the Laurent series, (2) and (3), with fixed
Ck . Equation (5) suggests the Hamiltonian structure of
the problem: z�t,w�, z̄�t,w21� and logw, t are canonical
pairs.

Consider the function V�z� defined on the curve by

V�z� �
jzj2

2
1 2iA�z�, z [ C , (6)

where we have separated the real and imaginary parts.
Here A�z� �

Rz�z̄0 dz0 2 z0 dz̄0��4i is the area of the sec-
tor enclosed by C and bounded by the ray argz and some
fixed reference ray. Just like the Schwarz function, this
function can be analytically continued within a strip con-
taining the curve. Indeed, writing (6) in terms of S�z�, we
have
V�z� � zS�z��2 1 2i
Z z

�S�z0� dz0 2 z0 dS �z0���4i �
Z z

S�z0�dz0

�
X̀
k�1

Ckz
k��pk� 1 t logz 2 y0�2 2

X̀
k�1

C2kz
2k��pk� , (7)
where y0 does not depend on z. As is seen from the
above definition, V is defined up to a purely imaginary
z-independent term. We fix it by requiring y0 to be real.

The function V is the generating function of the canoni-
cal transformation �logw, t� ! �z, z̄�. Indeed, from (7) we
have S�z� � ≠zV�z� and, by virtue of (4), logw � ≠tV.
Therefore, the differential dV � S�z� dz 1 logw dt en-
codes the LG equations (4) or (5).

Now we extend the differential dV to include variations
of all higher moments. For k $ 1, let us denote
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tk �
Ck
pk

, Hk �
≠V�z�

≠tk
, H̄k � 2

≠V�z�
≠t̄k

. (8)

Then the multitime Hamiltonian system is defined as

dV � S�z� dz 1 logw dt 1
X̀
k�1

�Hkdtk 2 H̄kdt̄k� .

Thus, the flows with respect to the “times” tk are

≠kz � �z,Hk�, ≠k̄z � �z, H̄k� , (9)

where ≠k � ≠�≠tk , ≠k̄ � ≠�≠t̄k , and �, � is the canoni-
cal Poisson bracket introduced above. These equations
are consistent due to the symmetry relations ≠lHk�z� �
≠kHl�z� which follow from (8). In terms of w, these con-
ditions have the form of the zero-curvature equations:

≠kHl�w� 2 ≠lHk�w� � �Hk�w�,Hl�w�� . (10)

We now proceed to calculate the Hamiltonians. Below we
will prove that in addition to (8), for z on the curve, the
Hamiltonians can be equivalently defined as

Hk � 2≠kV̄�z̄� . (11)

(The derivative is taken at fixed z̄.) Then (7) gives us

Hk � zk 2 ≠ky0�2 2
X̀
l�1

≠kylz
2l�l (12)

� ≠ky0�2 1
X̀
l�1

≠kȳl z̄
2l�l , (13)

where we set yk � C2k�p. Equation (12) implies that the
Laurent expansion of the Hk at w � 0 does not contain
powers of w higher than wk . Moreover, all non-negative
powers of w come from the first two terms of Eq. (12).
In turn, Eqs. (3) and (13) imply that Hk does not contain
negative powers of w. Altogether they mean that Hk is a
polynomial in w of degree k. It reads

Hk�w� � ���zk�w����1 1
1
2

���zk�w����0 . (14)

The symbol ��� f�w����1 means a truncated Laurent series,
where only terms with positive powers of w are kept;
��� f�w����0 is the constant (w0) part of the series.

It remains to prove Eq. (11). We first notice that
≠j ReV�z� � 0 if z belongs to the curve. This property
is proved by differentiating the real part of (6), V�z� 1

V̄�z̄� � jzj2. The analytic continuation away from the
curve gives V�z� 1 V̄���S�z���� � zS�z�. Taking the partial
derivative with respect to tj (holding z, but not z̄) and
restricting the result to the curve again, we get

≠kV�z� 1 ≠kV̄�z̄� 1 ≠kS�z�≠z̄V̄�z̄� � z≠kS�z� . (15)

But the right-hand side and the last term on the left-hand
side of (15) are equal since z � S̄�z̄� � ≠z̄V̄�z̄�. Thus
(15) reads

≠k�V�z� 1 V̄�z̄�� � 0 , (16)

where z belongs to the curve. Then (11) follows by virtue
of (8). Now we see that Hk and H̄k [defined as in (8)] are
indeed complex conjugates on the curve.

Equations (9) or alternatively (10) together with (2), (5),
and (14) provide an algorithm generating equations for the
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coefficients of the conformal map (2). Two first Hamilto-
nians are H1 � rw 1 u0�2, and H2 � r2w2 1 2ru0w 1

ru1 1 u2
0�2. The first equation of the hierarchy is

≠
2
11̄w � ≠t exp�≠tw� , (17)

where r2 � exp�≠tw�. One can see from ≠tV � logw
that w is the constant term in the expansion (7): w � y0.

The unitarity condition (a) for the Schwarz function and
the properties (6) and (16) of the generating function V

(which actually follow from the unitarity) impose impor-
tant relations among the harmonic moments of any smooth
simply connected domain and the harmonic moments of its
complement. First, from (6) one can derive the following
sum rules:

X
k$1

ktkyk �
X
k$1

kt̄kȳk , ȳ1 � tt1 1
X
k$2

ktkyk21 .

(18)

Second, there are symmetry relations for derivatives of the
harmonic moments yk � C2k�p of the interior domain
D1 with respect to the (rescaled) harmonic moments tj of
the exterior domain: ≠jyk � ≠kyj , ≠j̄yk � ≠kȳj , ≠tyk �
≠ky0. The proof: it follows from (13) that

H
C Hj dHk � 0

for all j, k, then it is easy to see that

≠jyk �
I
C
zk dHj�2pi �

I
C
zj dHk�2pi � ≠kyj .

This implies that for each analytic curve C �t, tj� there
exists a real function (prepotential) F�t, tj , t̄j� such that

yj � ≠jF, ȳj � ≠j̄F, y0 � ≠tF . (19)

This function determines Hk�z� via (12).
Equations (9) and (14) are familiar in the soliton lit-

erature as the dispersionless limit [8] of the 2D Toda hi-
erarchy. Dispersionless hierarchies of this kind [12] are
extensions of the integrable equations of hydrodynamic
type [13] to the multidimensional case. Many special so-
lutions were found in [14]. Equation (5) is known as the
string equation [9]. (See also [15] for more recent devel-
opments in the 2D Toda hierarchy.) To make the contact
we now review, following [8], the standard setup of the 2D
Toda hierarchy and its dispersionless limit.

The 2D Toda hierarchy is usually introduced by means
of two difference Lax operators:

L � r�t�eh̄≠t 1
X̀
k�1

uk�t�e2k h̄≠t ,

L̄ � r�t 2 h̄�e2 h̄≠t 1
X̀
k�1

ūk�t�ek h̄≠t ,

(20)

where r , uk , and ūk are functions of t and of two sets of
independent parameters tk , t̄k , and k . 0. These functions
obey the Lax-Sato equations:

h̄≠kL � �L,Hk�, where Hk � �Lk�1 1 �Lk�0�2 ,

h̄≠k̄ L̄ � �H̄k ,L�, where H̄k � �L̄k�2 1 �L̄k�0�2 .
(21)

The symbol �Lk�6 means the part of the operator that
consists of positive (negative) powers of the shift operator
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eh̄≠t , and �Lk�0 is the part that does not contain the shift
operator. The first equation of the hierarchy is the familiar
2D Toda equation:

≠
2
11̄w�t� � ew�t1 h̄�2w�t� 2 ew�t�2w�t2 h̄�, (22)

where r2�t� � ew�t1 h̄�2w�t�. It is also customary to con-
sider the Orlov-Shulman operators [16]

M �
X̀
k�1

ktkL
k 1 t 1

X̀
k�2

ykL
2k ,

M̄ �
X̀
k�1

kt̄kL̄
k 1 t 1

X̀
k�2

ȳkL̄
2k ,

(23)

where yk � yk�t, tj , t̄j�, and ȳk � ȳk�t, tj , t̄j� are func-
tions such that the operators obey the conditions �L,M� �
h̄L, �L̄, M̄� � 2h̄L̄. These operators satisfy the following
linear equations: LC � zC, ≠kC � HkC, h̄z≠zC �
MC, and similarly for the bar operators acting on C̄.

One particular solution of the 2D Toda hierarchy de-
scribes 2-matrix models. Consider the integral over two
Hermitian N 3 N matrices,

t �
Z
eNtr�MM̄1

P
k.0

�tkMk1t̄kM̄k�� dM dM̄ (24)

(the partition function). It has been shown that this integral
is the t function for a special solution of the 2D Toda
hierarchy with h̄ � 1�N [17]. The solution is selected
by the string equation �L, L̄� � h̄. The coefficients yk of
theM operator are given by yk � ≠k logt � 	Mk
, where
	· · ·
 means an average over matrices with the weight (24).
A scaling behavior of a proper large N limit of the matrix
model is expected to describe 2D gravity [3].

The dispersionless hierarchy is obtained in the limit
h̄ ! 0. In this limit, the shift operator eh̄≠t is replaced
by a classical variable w, the Lax operators are substituted
by their eigenvalues L ! z�w� and L̄ ! z̄�w21�, and the
operator, L21M, becomes a function S�z�. At the same
time all commutators are replaced by the Poisson brackets
with the symplectic structure �w, t� � w, so �L, L̄� � h̄
turns into (5). Equation (17) is the h̄ ! 0 limit of Toda’s
equation (22). The wave function C is replaced by eV� h̄,
where V is the generating function of the canonical trans-
formation �logw, t� ! �z, z̄�. At last, the t function is
t � eF� h̄2

as h̄ ! 0, where the function F is the prepo-
tential introduced in (19).

To summarize, comparing the semiclassical limit of the
Toda equations (20) and (21), and the string equation,
with Eqs. (2), (3), (5), (9), and (14) of an arbitrary in-
terface dynamics, we find an exact equivalence between
them. This is the main result of this work. The sum rules
(18) for the harmonic moments are nothing else but (a part
of) the W constraints for the t function. It also follows
from above that the interface dynamics is equivalent to the
N ! ` planar limit of the matrix model (24): the (loga-
rithm of) partition function of the latter is the prepotential
function F (19).
It is tempting to understand what do the robust scaling
behavior observed in a variety of growth problems [2] and
a scaling behavior of 2D gravity [3,18] have in common.
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