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To boost the accuracy of electronic structure calculations, the exchange-correlation energy may be
constructed from the Kohn-Sham orbitals. A formally exact construction is the density-functional pertur-
bation series, which appears to diverge for many real systems. We predict the radius of convergence and
resum this series, using only exact exchange and second-order correlation plus explicit density function-
als for the strong-interaction limit. Our new correlation functional, along with exact exchange, predicts
atomization energies with competitive accuracy and without the usual error cancellation.

PACS numbers: 31.15.Ew, 31.25.–v, 71.15.Mb
Electronic structure calculations, especially those for
large molecules or unit cells, are usually based upon Kohn-
Sham (KS) density-functional theory [1]. In this theory,
the ground-state density r�r� and total energy E�r� are
constructed by solving self-consistent one-electron equa-
tions, and only the density dependence of the exchange-
correlation energy Exc�r� must be approximated. The
simple local density approximation is surprisingly good for
periodic solids, and generalized gradient approximations
(GGA’s) [2] have made the theory useful for molecules.
However, these limited-form explicit density functionals
have reached a limit of accuracy where any improvement
for some systems or properties must be bought by a wors-
ening elsewhere. Greater accuracy is needed before the
theory will be useful for, for instance, the prediction of
reaction rates.

Progress has been achieved by implicit density func-
tionals [3] that construct the exchange-correlation energy
from the KS orbitals. For example, predicted atomization
energies of molecules have been improved by meta-GGA’s
which make use of the orbital kinetic energy density [4],
and by hybrids [5–7] which mix a fraction (�25%) of
exact exchange with GGA exchange and correlation.
Formally (but not practically), the problem is solved by
the density-functional perturbation theory for Exc�r� by
Görling and Levy [8], for which only the first-order (exact
exchange) and second-order (GL2 correlation) terms have
been evaluated explicitly from the occupied and unoccu-
pied KS orbitals.

In this Letter, we propose a way to resum the density-
functional perturbation expansion. Only the first- and
second-order (weak interaction) terms are treated ex-
actly; explicit density functionals are used for the opposite
(strong-interaction) limit. Our interaction strength interpo-
lation (ISI) for the adiabatic connection provides a density
functional [Eq. (11) below] that is both (i) competitively
accurate for atomization energies (Table I) and (ii) exact
in the high-density or exchange-dominated limit. Possible
benefits of exact exchange [9] include improvements in
derivative discontinuities and a more accurate KS poten-
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tial [10], essential for a correct description of linear and
nonlinear polarizabilities of large systems [11,12] as well
as time-dependent and excited-state phenomena [13]. ISI
generalizes GL2 in the same sense that GGA generalizes
the second-order gradient expansion. It suggests that, for
many real systems, the density-functional perturbation ex-
pansion is being applied outside its radius of convergence,
so that resummation is a necessity.

The exchange-correlation energy Exc�r� of an interact-
ing electron system with ground-state density r�r� is de-
fined by E�r� � Ts�r� 1 U�r� 1

R
d3r r�r�yext�r� 1

Exc�r�. The kinetic energy Ts�r� of the noninteracting
system with the same density r, the Hartree energy

TABLE I. Atomization energies DE of 18 molecules (in units
of 1 kcal�mole � 0.0434 eV), in Görling-Levy second-order
perturbation theory (GL2) [6], in our ISI resummation, and
from experiment (as in Ref. [4]). ac is the estimated radius
of convergence for the GL perturbation expansion of DWa .
Also shown are the PC values for DW` and DW 0

` (in units of
1 hartree � 27.21 eV).

Mol. DEGL2 DEISI DEexpt ac DWPC
` 2DW 0PC

`

H2 114 107.3 109.5 1.97 0.313 0.270
LiH 70 58.8 57.8 0.91 0.258 0.197
Li2 39 22.5 24.4 0.39 0.111 0.086
LiF 193 142.7 138.9 0.21 0.616 0.692
Be2 22 5.7 3.0 0.27 0.122 0.120
CH4 454 423.4 419.3 1.25 1.536 1.683
NH3 340 300.9 297.4 0.93 1.293 1.485
OH 128 108.6 106.4 0.69 0.473 0.570
H2O 274 235.7 232.2 0.63 0.973 1.182
HF 173 143.7 140.8 0.42 0.551 0.705
B2 190 68.1 71.0 0.06 0.375 0.465
CN 335 188.1 178.5 0.14 0.806 1.089
CO 355 265.9 259.3 0.22 0.891 1.238
N2 342 234.6 228.5 0.27 0.942 1.290
NO 265 157.9 152.9 0.23 0.801 1.127
O2 230 123.6 120.5 0.18 0.689 1.003
O3 407 136.8 148.2 0.15 1.157 1.658
F2 134 34.0 38.5 0.16 0.384 0.551

m.a.e. 74 4.3 · · ·
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U�r� � 1
2

R
d3r

R
d3r 0 r�r�r�r0��jr 2 r0j, and the exter-

nal potential yext�r� are treated exactly in KS theory. The
accuracy of GGA, meta-GGA, and hybrid approximations
Eapp
xc �r� to Exc�r� results from some cancellation of the

error in the exchange part or high-density limit [14]:

Eapp
x �r� � lim

l!`

1
l

Eapp
xc �rl� (1)

[where rl�r� � l3r�lr� is a scaled density] by the
corresponding error in the correlation part Eapp

c �r� �
Eapp
xc �r� 2 Eapp

x �r�. The exact exchange energy Ex�r�
is known explicitly as a Fock integral of the KS orbitals
[1]. Since these orbitals are always available in a KS
calculation, Ex�r� is easily evaluated. However, exact
exchange is not compatible with standard density func-
tionals for correlation: The combination leads to unreal-
istic atomization energies for molecules [9,15,16]. The
exact exchange hole in a molecule has a long-range part
which is canceled by the exact correlation hole but not by
the approximate ones. In other words, standard forms of
Eapp

c �r� capture only dynamic or short-range, not static
or long-range, correlation.

Our present approach uses all of the information
provided by exact exchange (and more), starting from
Görling-Levy (GL) perturbation theory [8] where the
correlation energy is expanded in a series,

Exc�r� � Ex�r� 1
X̀
n�2

EGLn
c �r� . (2)

GL perturbation theory is closely related to the more popu-
lar one by Møller and Plesset (MP). The terms EGLn

c �r�
can be found explicitly. In contrast to Ex�r�, however,
their numerical evaluation is expensive, since they involve
not only the N occupied KS orbitals but also all the un-
occupied ones. Moreover, the computational expense in-
creases rapidly with the order n. The series (2) converges
slowly, and for many systems it might not converge at all.

To uncover the likely mathematical reason for the di-
vergence, we consider the coupling-constant integral or
adiabatic connection [17,18],

Exc�r� �
Z 1

0
da Wa�r� , (3)

an exact expression for Exc�r�. The integrand is

Wa�r� � �Ca�r�jV̂eejCa�r�	 2 U�r� , (4)

where V̂ee �
P

i,j jr̂i 2 r̂jj
21 is the Coulomb-repulsion

two-particle operator and Ca�r� is the antisymmetric wave
function that yields the given density r and minimizes the
expectation value �T̂ 1 aV̂ee	, with the operator T̂ for the
kinetic energy. In other words, Ca�r� is a wave function
where the electronic repulsion is scaled by a factor a $ 0.
(We use atomic units: h̄ � m � e2 � 1.)
The perturbation series (2) is closely related to the
Taylor expansion of Wa�r� around a � 0,

Wa�r� � Ex�r� 1
X̀
n�2

EGLn
c �r�nan21. (5)

As a increases from 0, the function Wa starts from W0 �
Ex , first decreasing linearly but asymptotically approach-
ing a constant value W` # Ex as a ! ` [19,20]:

Wa�r� ! W`�r� 1 W 0
`�r�a21�2 �a ! `� . (6)

As we shall see, this behavior can give the expansion
(5) a finite radius of convergence ac , 1, which via
Eq. (3) makes the series (2) diverge.

In the strong-interaction limit a ! `, the electronic po-
sitions become strictly correlated within the continuous
density r�r�. Any accidental clustering of these positions
is strictly suppressed. In the simple “point charge plus
continuum” (PC) model [19,21] for this limit, a spheri-
cal unit cell of empty space surrounds each electron; the
electron can be off center in the presence of a density gra-
dient. This model provides accurate approximations [21]
to W`�r� # Ex�r� and W 0

`�r� $ 0 in Eq. (6):

WPC
` �r� �

Z
d3r

Ω
Ar�r�4�3 1 B

j=r�r�j2

r�r�4�3

æ
, (7)

W 0PC
` �r� �

Z
d3r

Ω
Cr�r�3�2 1 D

j=r�r�j2

r�r�7�6

æ
, (8)

with the constants A � 21.451, B � 5.317 3 1023, C �
1.535, and D � 22.558 3 1022. The accuracy of these
second-order gradient forms seems to follow from the
short range [21] of the PC cell. Because of a severe self-
correlation error absent in meta-GGA [4], the local den-
sity approximation (B � D � 0) and standard GGA’s fail
in this limit [21].

We truncate the divergent expansion (5) at linear order
(GL2) and make the simplest-possible resummation:

WISI
a �r� � W`�r� 1

X�r�p
1 1 Y �r�a 1 Z�r�

(9)

(“interaction-strength interpolation”), where the coeffi-
cients are chosen so that both Ex�r� and the n � 2 term
of the expansion (5) as well as the asymptotic behavior
(6) are reproduced correctly,

X �
xy2

z2
, Y �

x2y2

z4
, Z �

xy2

z3
2 1 , (10)

with x � 24EGL2
c �r�, y � W 0

`�r�, and z � Ex�r� 2

W`�r�. WISI
a �r� has all the fundamental properties of the

unknown exact integrand Wa�r�, as listed in Ref. [19].
We use the PC model for W`�r� and W 0

`�r�.
By analytic integration [Eq. (3)] of the function (9), we

obtain the ISI exchange-correlation functional,
EISI
xc �r� � W` 1

2X
Y

∑
�1 1 Y �1�2 2 1 2 Z ln

µ
�1 1 Y �1�2 1 Z

1 1 Z

∂∏
. (11)
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Unlike the other accurate functionals Eapp
xc �r� available,

the ISI functional has the exact exchange part, EISI
x �r� �

Eexact
x �r�. This follows from Eq. (1) via scaling relations

given in Refs. [19] and [21]. Therefore, ISI does not de-
pend upon a cancellation of errors between Ex and Ec.

Since evaluation of the GL2 energy is computationally
rather expensive (as it is for the corresponding term in the
more popular MP series), accurate values for EGL2

c �r� are
usually unavailable in the literature. An exception arises
[6] for molecular atomization energies,

DE�rmol, 
rk
at�� �

KX
k�1

E�rk
at� 2 E�rmol� , (12)

which are energy differences. In Eq. (12), rmol and the
rk
at (k � 1, . . . ,K) are, respectively, the ground state den-

sities of the molecule and its K separated atoms after
atomization.

Utilizing frozen-core ideas along with GGA densities,
orbitals, and exchange potentials, Ernzerhof [6] provided
the differences DEGL2

c �rmol, 
rk
at�� but not the values

EGL2
c �r� for the individual densities rk

at and rmol. Con-
sequently, we cannot make the interpolation (9) for the
individual integrands Wa�r�. However, the weak- and
strong-interaction limits are preserved when the same
analytic form (9) is used to model the difference function
DWa�rmol, 
rk

at�� �
PK

k�1 Wa�rk
at� 2 Wa�rmol� which,

after integration via Eq. (3), yields the contribution
DExc�rmol, 
rk

at�� to the quantity (12). Thus we have used
in x, y, and z of Eq. (10) the differences DEx and DEGL2

c
from the third and last columns of Table 2 in Ref. [6] and
our DWPC

` and DW 0PC
` , evaluated with GGA [2] densities

at the same experimental geometries used in Ref. [6].
Table I shows our results for 18 molecules. The GL2

results from Ref. [6] (using DEGL2
xc � DEexact

x 1 DEGL2
c )

display severe overbinding, especially for the multiply
bonded molecules (the last eight in Table I, including the
strong-static-correlation cases F2 and O3). Our ISI inter-
polation to the PC values of DW` and DW 0

`, which rep-
resents a simple resummation of GL perturbation theory,
greatly improves the accuracy of the predicted atomiza-
tion energies, reducing the mean absolute error from 74.4
to 4.3 kcal�mole. This is achieved without error cancel-
lation, since EISI

x is exact exchange. The meta-GGA of
Ref. [4], which does rely upon error cancellation, makes a
mean absolute error of 4.1 kcal�mole for these molecules.

The explicit expression for EGL2
c �r� is [8]

EGL2
c �r� � 2

X̀
n�1

j�C0jV̂ee 2 V̂H 2 V̂xjC
n
0 	j2

En
0 2 E0

. (13)

Here, C
n
0 is the nth excited state of the KS single-particle

Hamiltonian ĤKS (with ground state C0), i.e., ĤKSC
n
0 �

En
0 C

n
0 ; V̂H and V̂x , respectively, are the one-particle opera-

tors of the Hartree potential yH�r� �
R

d3r 0 r�r0��jr 2 r0j
and the exchange potential yx�r� � dEx�r��dr�r�.

Because the KS orbitals in Ex and EGL2
c are implicit

functionals of the density r�r�, so is EISI
xc of Eq. (11). For
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an ion of fixed electron number N in the limit of large
nuclear charge, this functional correctly reduces to Ex 1

EGL2
c and so meets the challenge to density-functional

theory presented almost 20 years ago [22]: Its correlation
energy correctly saturates to a negative constant for some
values of N (e.g., 10) and decreases linearly with nuclear
charge for other values of N (e.g., 4). Even van der Waals
forces can be described [23] if the functional EGL2

c �r�
is employed.

Although GL and MP perturbation theories are compu-
tationally expensive, it is not proven whether either series
is convergent. There are indications that the MP series di-
verges even for systems such as the neon atom [24] which,
because of their large HOMO-LUMO gaps, should be good
candidates for convergence.

For our model integrand (9), the Taylor expansion (5)
has a finite radius of convergence, given by

ac�r� �
1

Y �r�
�

�Ex 2 W`�4

16�EGL2
c W 0

`�2
, (14)

since the continuation of the function WISI
a �r� into the

complex plane is not analytic at a � 2ac�r�. Figure 1(a)
shows the function WISI

a for an example where ac �
0.812 , 1. Also shown are the truncated expansions

FIG. 1. (a) The model integrand WISI
a [Eq. (9)] in arbitrary

units for a system with Ex 2 W` � 1.0, EGL2
c � 20.0925, and

W 0
` � 3.0 (dashed curve), and its truncated Taylor expansions

of orders n � 1 20 (solid curves). The radius of convergence
is ac � 0.812. (b) The corresponding integrated correlation
energies

Pn
m�2 EGLm

c,ISI�r� �
R1
0 da W ISI�n�

a in nth order Görling-
Levy perturbation theory (full circles) oscillate around EISI

c �r�
(horizontal dashed line) and eventually diverge. (An accurate
truncation of the series would include only half of the smallest
term, m � 13, and all of the lower-order terms.)



VOLUME 84, NUMBER 22 P H Y S I C A L R E V I E W L E T T E R S 29 MAY 2000
WISI�n�
a �

Pn
m�1

1
m!a

m�dmWISI
a �dam�a�0 of this func-

tion for n � 1 20. Clearly, the series converges rapidly
for a , ac but produces increasingly unphysical behav-
ior for a . ac. By integration, we can predict what we
expect would be the outcome of GL perturbation theory,
if carried to nth order. These correlation energies are
plotted in Fig. 1(b) for n � 2 30. The oscillating pattern
there results from the sign alternation of the coefficients
in the divergent Taylor expansion of WISI

a , as can be seen
in Fig. 1(a). These oscillations appear to be typical for a
divergent perturbation expansion, carried to high orders
n; see Figs. 1 and 2 in Ref. [24].

In Table I, ac � 1
16 �DEx 2 DW`�4��DEGL2

c DW 0
`�2 is

,1 for many molecules, suggesting that the GL pertur-
bation series for Ec�r� does not converge in these cases.
Since DWa is the sum of the K functions Wa�rk

at� and
2Wa�rmol�, its radius of convergence ac is the minimum
of those for the individual functions of a, most likely that
for Wa�rmol�. For some atoms (e.g., He, Be, and Ne), we
find 1 , ac , 2 [21].

While the specific radius of convergence (14) follows
from our model (9), the physical reason for a finite radius
of convergence could be an instability of Ca�r� under mu-
tual Coulomb attraction (a , 0). According to Eq. (14),
the radius of convergence ac for the perturbation expan-
sion is nonzero for any system in which EGL2

c is finite. For
the uniform electron gas on a per-electron basis, however,
EGL2

c � 2` and ac � 0; our Eqs. (9) and (11) remain fi-
nite, but are not accurate in this limit [21]. Generally, the
random phase approximation provides a standard resum-
mation for weak interactions which can be interpolated to
the strong interaction limit or otherwise [25] corrected.

Although we have not done so, it is possible [3,9] to con-
struct the exchange-correlation potential dExc�r��dr�r�
for an implicit density functional.

Our analysis suggests that a perturbation expansion,
even if divergent, contains strong information in its low-
order terms. Additional independent information on the
strong-interaction limit, which is simple [19–21] but not
accessible by perturbation theory, can be used for an accu-
rate resummation of the perturbation series.
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