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Diffractive Dijets with a L eading Antiproton in pp Collisionsat /s = 1800 GeV
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We report results from a study of events with a leading antiproton of beam momentum fraction
0.905 < xr < 0.965 and 4-momentum transfer squared |f| < 3 GeV? produced in pp collisions at
/s = 1800 GeV at the Fermilab Tevatron collider. Approximately 2% of the events contain two jets of
transverse energy Ey' > 7 GeV. Us ng the dijet events, we evaluate the diffractive structure function
of the antiproton and compare it with expectations based on results obtained in diffractive deep inelastic
scattering experiments at the DESY ep collider HERA.

PACS numbers: 13.87.Ce, 12.38.Qk, 12.40.Nn

Experiments a the DESY ep collider HERA [1,2]
and at pp colliders [3,4] have reported and characterized
events containing a hard scattering while carrying the
characteristic signature of single diffraction dissociation,
namely, a leading (anti)proton and/or a forward rapidity
gap. The prevailing theoretical concept is that the rapidity
gap, defined as a region of pseudorapidity [5] devoid of
particles, is associated with the exchange of a Pomeron
(IP) [6], which in QCD is a color-singlet state with
vacuum guantum numbers. In this framework, pp hard
diffraction can be expressed as a two-step process, p +
p—[p + P+ p—p' + (W,dje,...) + X, and
similarly, diffractive deep inelastic scattering (DDIS) as
Yy +p—y +[p+P]>p +X

The central issue in this field is whether hard diffrac-
tion processes obey QCD factorization, i.e.,, can be de-
scribed in terms of parton level cross sections convoluted
with a universal “diffractive” (anti)proton structure func-
tion. In addition to its usual dependence on x-Bjorken and
02, the diffractive structure function could also depend
on the recoil (anti)proton fractional momentum loss ¢ and
4-momentum transfer squared . The DDIS experiments
measure the diffractive structure function of the proton,
FPB)(&, B, 0?), integrated over 1, where B = x/¢ may be
interpreted as the momentum fraction of the parton in the
Pomeron and Q? is the virtuality of y*. Diffractive quark
densitiesare obtained directly from F2¥(¢, B, 0%). Using
a QCD analysis, the H1 Collaboration derived [1] diffrac-
tive gluon densities from the observed Q% dependence of
FP®). The HERA data, including hard photoproduction,
are generally consistent with the parton densities extracted
by the H1 analysis. However, caculations of W and di-
jet production rates at the Tevatron using the H1 parton
densities predict [7—9] rates ~10 times larger than those
measured. The observed discrepancy challenges the uni-
versality of the diffractive parton densities extracted from
DDIS and leads naturally to the question of whether the
shape of the B distribution is aso process dependent. In
the present experiment, we measure both the shape and ab-
solute normalization of the antiproton diffractive structure
function in events with two jets and a leading antiproton
produced in pp collisions at /s = 1800 GeV, and test
factorization by comparing our results with expectations
based on the diffractive proton structure function deter-
mined in DDIS.

Our experimental procedure may be outlined as fol-
lows. From an inclusive sample of single diffraction (SD)
events, pp — p'X, collected by the CDF detector by trig-

gering on a p detected in a forward magnetic “Roman
pot” spectrometer (RPS), we select a diffractive dijet sub-
sample, p + p — p’ + Jet; + Jet, + X, containing two
jets with transverse energy [5] Ey > 7 GeV. In addi-
tion to the two leading jets, the event may contain other
(lower E7) jets. Similarly, a nondiffractive (ND) dijet
sample is selected from events collected with a minimum
bias (MB) trigger requiring a coincidence between two
beam-beam counter (BBC) arrays [10] covering the region
3.2 < |n| < 5.9. Fromthe Er and 7 of the jets we evalu-
ate the fraction x of the momentum of the antiproton car-
ried by the struck parton,

1 n .
X = — ZE’Te7’7 ,
Vs 5

where the sum is carried over the two leading jets plus
the next highest E; jet, if there is one with Er > 5 GeV.
In leading order QCD, the ratio R(x) of the SD to ND
rates is equal to the ratio of the antiproton SD to ND
structure functions. Thus, the diffractive structure function
may be obtained by multiplying the known ND structure
function by R(x). The absolute normalization of the SD
dijet sample is obtained by scaling the event rate to that
of the inclusive diffractive sample and using for the latter
our previously measured inclusive cross section [11]. The
normalization of the ND dijet sample is obtained from the
measured 51.2 = 1.7 mb cross section of the BBC trigger.

The CDF detector is described elsewhere [10]. The jets
were detected and their energy measured by calorimeters
covering the pseudorapidity range |n| < 4.2. The position
of the event vertex was determined from the tracks regis-
tered in the central tracking detectors. During the Tevatron
collider run of 1995-1996 (Run 1C), in which the present
data sample was collected, the RPS was added to CDF.
It consisted of X-Y scintillation fiber tracking detectors
placed in Roman pot vessels attached to the machine vac-
uum pipe by bellows, so that they could be moved remotely
to bring the detectors close to the circulating beams after
attaining stable beam conditions, as described in [11]. The
spectrometer comprised three Roman pots, spaced ~1 m
apart from one another along the beam direction. The
pots were positioned on the inside of the Tevatron ring
in a straight section of the machine located ~57 m down-
stream in the p beam direction, following astring of dipole
magnets. In addition to the X-Y fiber tracker, each pot
contained a scintillation counter used for triggering. A
coincidence among the trigger counters of the three Ro-
man pots, in time with a p gate, provided the inclusive
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diffractive trigger. The momentum and ¢ value of the de-
tected antiproton were determined from a fit to the X-Y
Roman pot track positions and the vertex of the event, us-
ing the beam transport matrix in the fit. The Roman pot
position resolution was =100 wm. In the region of our
measurement, typical resolutions in ¢ and ¢ were 6¢ =
+0.001 and 6t = *0.07 GeV>.

The data were collected during runs of typical lumi-
nosities ~3 X 10% ecm2sec™!. After applying off-line
cuts requiring a reconstructed track with acceptable y?
traversing all three Roman pot detectors, and a single
reconstructed vertex within |z, | < 60 cm, we obtained
1.6 X 10° SD events. From this inclusive data set, and a
sample of 300 K MB events, we extracted two respective
dijet subsamples, consisting of 30410 SD and 32629 ND
events with two jets of corrected £y > 7 GeV. The Ef '
was defined as the sum of the calorimeter Er within an
n-¢ cone of radius 0.7 [12]. The jet energy correction
included subtraction of an average underlying event Er
of 0.54 (1.16) GeV for diffractive (nondiffractive) events.
These values were determined experimentally, separately
for SD and ND events, fromthe Y’ E; of calorimeter tower
energy measured within a randomly chosen 7-¢ cone of
radius 0.7 in events of the inclusive data samples.

Thediffractive dijet sample contains (7.0 + 0.7)% over-
lap events, consisting of a soft SD event superimposed
on a ND dijet event. Such events are due to two pp
interactions occurring in the same beam-bunch crossing
at the detector. The fraction of overlap events was deter-
mined from an analysis of the BBC and forward calorime-
ter tower multiplicities. Each diffractive data distribution
is corrected for the overlap background by subtracting the
corresponding ND distribution normalized to the overlap
fraction. Another correction is due to the single vertex se-
lection requirement imposed on the SD data. In addition
to rejecting events from multiple interactions, this require-
ment also rejects single interaction events with multiple
vertices caused by reconstruction ambiguitiesin high mul-
tiplicity events. From an analysis of the BBC and forward
calorimeter tower multiplicities, the single vertex cut effi-
ciency (fraction of single interaction events retained by the
single vertex cut) was determined to be (81 * 2)%.

Figures 1(a) and 1(b) show, respectively, the RPS ac-
ceptance and a lego plot of the inclusive diffractive event
sample as a function of ¢ and ¢. The fraction of dijet
events in the inclusive sample is shown as a function of
& in Fig. 1(c) and versus ¢ in Fig. 1(d). The fraction in-
creases linearly as a function of &, but no significant ¢
dependence is observed in agreement with the UAS8 result
[3] of aflat + dependence in the region 0.9 < 7] < 2.3.

Figure 2 presents the dijet mean E; and mean
n digributions, Ei = (EX" + EF%)/2 and gt =
(nieth + nie2) /2 for the diffractive (points) and ND (his-
tograms) event samples. The diffractive E7 distribution is
somewhat steeper than the ND, and the diffractive n* is
boosted towards the proton direction (positive n*). These
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FIG. 1. Distributions versus ¢ and ¢: (a) Roman pot accep-
tance; (b) inclusive diffractive event sample; (c) ratio of dijet to
inclusive diffractive events versus ¢ and (d) versus r.

features indicate that the x dependence of the diffractive
structure function of the antiproton is steeper than that of
the ND.

Figure 3 shows the ratio R (x) of the number of SD dijet
events, corrected for Roman pot acceptance, to the number
of ND dijets, where the two data samples were normal-
ized to correspond to the same luminosity. The tilde over
the R indicates integration over al variables other than x
within the region of the data samples under consideration,
namely, (1, &, Ey) for diffractive and E5 for ND events.
The results are shown in Fig. 3 for || < 1 GeV? and
Er(jetl,jet2) > 7 GeV insix & binsof width A¢ = 0.01
in the range 0.035 < ¢ < 0.095. The lines through the
data points are fits of the form R(x) = Ry(x/0.0065)"" in
theregion 1073 < x < 0.5&mn for each & bin. The lower
x limit is imposed to minimize the influence of detector
end effects. As mentioned above, R (x) represents the ratio

Caloaa® 11

-2 0 2 4
n*z(njeﬂ +nje12)/2

EF=(EX"+E®%)/2 (GeV)

FIG. 2. Comparison of diffractive to nondiffractive dijet (a)
mean Er and (b) mean 7 distributions.
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FIG. 3. Ratio of diffractive to nondiffractive dijet event rates
asafunction of x (momentum fraction of partonin p). The solid
lines are fits to the form R(x) = Ry(x/0.0065)" for 8 < 0.5.

of the diffractive to ND parton densities of the antiproton,
as “viewed” by dijet production. We will denote the asso-
ciated structure functions by F;;(x) = x[g(x) + gq(x)],
where g(x) is the gluon and ¢(x) is the quark density; the
latter is multiplied by g to account for color factors. The
shape of the R(x) distribution exhibits no significant ¢ de-
pendence. A fit to adl the datain the region 0.035 < ¢ <
0.095 yields Ry = (6.1 = 0.1) X 1073 and r = 0.45 *
0.02 with y2/d.o.f. = 0.76. The exponent r is insensitive
to systematic uncertaintiesin jet energy calibration, which
generally depend on ni°. A 30% change in the SD or ND
underlying event energy values results in a 14% change
in Ry; adding in quadrature an estimated 20% normaliza-
tion uncertainty yields an overall systematic uncertainty of
+25%. Another uncertainty arises from the sensitivity of
the parameters Ry and r to the number of jets used in evalu-
ating x. Using only the two leading jets yields Ry =
(4.8 =0.1) X 1073 and r = 0.33 = 0.02 (y*/d.of. =
1.21), while by using up to four jetswith E; > 5 GeV we
obtain Ry = (7.0 = 0.1) X 1073 and r = 0.48 = 0.02
(x*/d.of. = 0.74). About 48% (23%) of the SD (ND)
events have no jets of Ey > 5 GeV, other than the two
leading jets; for these events Ry = (9.6 * 0.2) X 1073
and r = 0.31 * 0.03 (y%/d.of. = 1.18).

The diffractive structure function of the antiproton is
obtained from the equation

FP(B) = R(x = B&) X FYP(x = B&).

We have evauated F5(8) for il <1 Gev?,
0.035 < ¢ < 0.095, and Er(jetl,jet2) > 7 GeV using
the GRV98LO parton density set [13] in F}”(x — B&).

The result is shown in Fig. 4. The solid curve is a fit
to the data of the form F}(B) = B(8/0.1)™" in the
range (1073/&) < B < 0.5, which corresponds to the
region 1073 < x < 0.5&m, of Fig. 3. For our average
¢ of 0.065 the value of 8 = 0.1, for which F}; = B,
corresponds to x = 0.0065, for which R = R,. This
fit yields B = 1.12 = 0.01 and » = 1.08 = 0.01 with
x2/d.of.=17. The systematic uncertainty in B is
+0.28, carried over from that in Ry. The lower and upper
boundaries of the filled band surrounding the data points
represent the B distributions obtained by using only
the two leading jets or up to four jets of Er > 5 GeV,
respectively, in the evaluation of x. The dashed (dotted)
curve is the expectation for Ff}(ﬁ) calculated from fit 2
(fit 3) of the H1 diffractive structure function [1] evaluated
a Q? = 75 GeV?, which approximately corresponds to
the average value of (E5)? of our data. The H1 structure
function, which was derived from data in the region of
& < 0.04, has two terms, presumed to be due to Pomeron
(IP) and Reggeon (IR) exchanges. Each term consists of
the structure function of the exchanged Pomeron/Reggeon
multiplied by the corresponding flux factor, fp k)5 (€, 1):

. min £=0.095
me- S [ G- Funlto
i(B) ,-:%,R =—1J£=0035 firp(&.0)
=
a3 == H1 fit-2 —+ CDF data
L H1 fit-3 EX"?> 7 GeV
100}
00F (2= 75Gev?) 0.035 < & < 0.095
|t]<1.0 GeV?
10 |
1k
01 E
L e
0.1 1

FIG. 4. Data B distribution (points) compared with expecta-
tions from the parton densities of the proton extracted from
diffractive deep inelastic scattering by the H1 Collaboration. The
straight line is afit to the data of the form g8~". The lower (up-
per) boundary of the filled band represents the data distribution
obtained by using only the two leading jets (up to four jets of
Er > 5 GeV) in evaluating 8. The dashed (dotted) lines are
expectations from the H1 fit 2 (fit 3). The systematic uncer-
tainty in the normalization of the data is +25%.
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For the Pomeron we used parton densities from the H1 fits
and for the Reggeon the Owens [14] pion structure; for the
flux factors we used the form f;/;(&,1) = ebif/g2«(~1
with the H1 fit parameters ap(t) = 1.20 +
0.26t, ar(t) = 0.57 + 0.9¢, bp = 4.6 GeV~2, by =
20GeV2, Cp =1, and Cr = 16.0 (15.9) for fit 2
(fit 3) [15]. The measured and expected structure func-
tions disagree both in normaization and shape. The
discrepancy in normalization, defined as the ratio of the
integral over B of datato expectation, isD = 0.06 = 0.02
(0.05 = 0.02) for fit 2 (fit 3).

The disagreement between our measured diffractive
structure function and the expectation from DDIS repre-
sents a breakdown of factorization. A similar breskdown
was observed [4] in comparing diffractive W-boson and
dijet production rates at the Tevatron with expectations
based on ZEUS results [2] obtained from DDIS and dijet
photoproduction at HERA. The normalization discrepancy
in that case, based on comparisons made through Monte
Carlo simulations, was found to be D = 0.18 %= 0.04.
The relative suppression of Tevatron to HERA diffractive
ratesisin general agreement with predictions based on the
renormalized Pomeron flux [7,16] and soft color exchange
[17] modéls.

In summary, we have studied the properties of dijet
eventsof E5 > 7 GeV produced diffractively in pp colli-
sionsat /s = 1800 GeV intherange0.035 < ¢ < 0.095
and |¢| < 3 GeV? and determined the diffractive struc-
ture function of the antiproton, Fﬁ(ﬁ), as a function of
B = x(partonin p)/¢. The ratio of dijet to inclusive
diffractive rates shows no significant ¢ dependence. For
B < 0.5, the B distribution of F}(B) varies as ~1/8.
Comparison of Fﬁ(ﬁ) with expectations based on parton
densities extracted from diffractive DIS at HERA shows
a breakdown of factorization both in normalization and in
shape of the B dependence.
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