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Spectral Flow and Vortex Dynamics in a Temperature Gradient
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In the mixed state of superconductors the spectral flow of fermion zero modes in the vortex core
couples the motion of vortices to that of the normal fluid. This gives rise to a heat current perpendicular to
the direction of vortex motion and therefore to longitudinal thermomagnetic effects like the thermopower
and the Peltier effect. Analysis of vortex motion in a temperature gradient on this basis yields excellent
agreement with experimental results.

PACS numbers: 74.60.Ge, 74.25.Fy
The equation of motion governing vortex dynamics in
superfluids and superconductors has been the subject of
intensive research. Considerable insight has been achieved
recently by noting the important role played by the so
called spectral flow [1–3]. This effect, known from rela-
tivistic quantum field theory, occurs in Fermi superfluids
and superconductors, if quantized vortices are present. The
spectrum of bound excitations in the vortex core has an
asymmetric branch, which crosses zero as a function of
angular momentum [4]. Motion of the vortex with respect
to the heat bath leads to spectral flow along this branch. In
this process the momentum of the quasiparticles (QPs) in
the vortex core is not conserved, which implies a transfer
of momentum from the vortex to the heat bath and thus
an additional force on the vortex. Spectral flow occurs
if the excitation spectrum may be regarded as continuous,
as, e.g., in the hydrodynamic limit of vortex motion usu-
ally explored experimentally in superconductors. In this
limit the consequences of spectral flow are important. For
example, the Hall angle is small, since the spectral flow
almost “cancels” the Magnus effect. Including the spec-
tral flow force into the equation of motion of vortices re-
produces the results of the microscopic theory of mutual
friction [5]. The spectral flow force has recently been ob-
served experimentally in 3He [6].

We point out here that the spectral flow is also essen-
tial for an understanding of thermomagnetic effects in the
mixed state of superconductors [7,8]. These effects arise,
since the motion of vortices couples to that of the normal
fluid and therefore gives rise to a heat current. We argue
that the spectral flow provides just such a coupling and that
it determines in particular the longitudinal thermomagnetic
effects like the thermopower and the Peltier effect. We de-
rive an equation of motion for vortices in a temperature
gradient. Analysis of vortex motion based on this equa-
tion yields excellent agreement with experimental results.

The thermomagnetic effects which relate the tempera-
ture gradient =T to the electrical field E may be defined
according to [9]

E � S=T 1 Q=T 3 B . (1)

Here S is the thermopower (or Seebeck coefficient) and
Q is the Nernst coefficient. Experiments in the flux flow
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regime in high temperature superconductors show that the
thermal Hall angle defined as tanath � QB�S is of order
1 in magnetic fields of order 1 T; i.e., the Seebeck effect is
of the same magnitude as the Nernst effect [8,10]. Since
the electrical field is directly related to the vortex veloc-
ity vL according to E � B 3 vL this implies that vortices
move at a large angle with respect to =T , as shown in
Fig. 1. Note that at the same time the Hall angle aH ob-
tained from the resistivity (r) and the Hall resistivity (rH)
is small, of the order tanaH � rH�r � 1023 in magnetic
fields of order 1 T; i.e., the large thermal Hall angle occurs
in the hydrodynamic limit of vortex motion [8,10,11]. The
thermomagnetic effects defined by Eq. (1) are related to
another set of effects [9], which describe the coupling be-
tween the heat (jh) and the electrical (j) current densities:

jh � Pj 1 ekB 3 j . (2)

Here P and e are, respectively, the Peltier and Ettings-
hausen coefficients and k is the thermal conductivity. Ac-
cording to the Onsager relations P � ST and ek � QT .
This has been verified experimentally, e.g., for the Peltier
coefficient and for the thermopower [11]. It is therefore
equivalent to discuss either the electrical voltage resulting
from an applied temperature gradient or the heat current
resulting from an applied electrical current.

A qualitative understanding of the coupling between
vortex motion and the heat current is obtained by consid-
ering a current driven resistive state, as shown in Fig. 2.
In the hydrodynamic limit vortices move almost perpen-
dicular to the applied electrical current j with velocity vL.

FIG. 1. Vortex motion in a temperature gradient. The magnetic
field is in the z direction (see text).
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FIG. 2. Current driven vortex motion in the hydrodynamic
regime, where tanaH ø 1. The magnetic field is in the z direc-
tion (see text).

The heat current has two components: (i) It is well known
that a heat current jy

h parallel to vL results directly from
the motion of vortices, since vortices transport an entropy
sy (per unit length). sy arises mainly from the normal ex-
citations in the vortex core. Obviously jy

h is perpendicular
to the electrical current j and therefore gives rise to the
transverse Ettingshausen effect. This vortex heat current is
unique to the mixed state of superconductors and leads to
transverse thermomagnetic effects much larger than those
in the normal state (see, e.g., [7,8,12]). (ii) We propose that
a longitudinal heat current arises from the spectral flow:
Because of the Magnus effect a vortex moving with ve-
locity vL generates a supercurrent jM

s perpendicular to vL,
which takes off momentum. The spectral flow generates
in addition a stream jS

n of unbound QPs, which carry off
momentum (almost) equal, but opposite to that of the in-
duced superflow [2]. This explains why the total force on
the vortex perpendicular to vL is nearly zero and there-
fore that the electrical Hall angle aH is small. However,
it implies also a heat current jS

h perpendicular to vL, since
obviously the normal QP current jS

n carries heat, whereas
the induced superflow jM

s does not. Since jS
h is parallel

to the electrical current j this gives rise to a longitudinal
Peltier effect (Fig. 2).

We turn now to a quantitative discussion and consider
the motion of vortices in a temperature gradient. We start
with the equation of motion for a vortex:

0 � FM 1 FI 1 FS 1 Fth 1 Fd . (3)

The forces in this equation are

FM � pns�vs 2 vL� 3 z , (4)

FI � pnn�vn 2 vL� 3 z , (5)

FS � 2pC�vn 2 vL� 3 z , (6)

Fth � 2sy=T , (7)

Fd � D�vn 2 vL� . (8)

Here vs and vn are the velocities of the superfluid and
normal components of the liquid, respectively, and ns and
nn are the corresponding densities. The total density is
given by n � ns 1 nn. z is a unit vector in the direction of
the magnetic field. We use units h̄ � c � 1. We assume
that vortices move freely in response to the driving forces.
The influence of pinning will be discussed below.

We discuss the forces in Eq. (3) briefly. (i) FM and FI

are the Magnus and Iordanskii forces, which describe the
coupling of vortex motion to the superfluid and normal
components of the liquid [13]. (ii) FS is the spectral flow
force [1–3]. It provides an additional coupling between
the motion of vortices and that of the normal fluid. The
coefficient C depends on the regime of vortex dynamics
and is given by [3,6]

C
n

� 1 2
v

2
0t2

1 1 v
2
0t2

tanh

µ
D�T �
2kBT

∂
. (9)

Here v0 is the level spacing in the vortex cores, t is
the scattering time of the QPs, and D�T � is the energy
gap. The hydrodynamic limit is characterized by the con-
dition v0t ø 1. In this limit C�n � 1 and �n 2 C��n �
�D�EF�2 ø 1 [3,14]. In the collisionless limit character-
ized by v0t ¿ 1 Eq. (9) yields C�n ! 0 for T ! 0 and
C�n � 1 for T ! Tc. Apparently, spectral flow is sup-
pressed in this limit with decreasing temperature and van-
ishes for T ! 0 [15]. (iii) Fth in Eq. (3) describes the
force on a vortex by a temperature gradient [16]. The exis-
tence of this force is well known from experiment [7,8,12].
It is due to the finite transport entropy sy: If a moving vor-
tex transports entropy it experiences, vice versa, a force in
a temperature gradient. sy is temperature dependent and
vanishes for T ! 0 and for T ! Tc [7,8,12]. (iv) Fd is
a dissipative friction force. The friction coefficient D is
of the order D�n � v0t��1 1 v

2
0t2�, i.e., D�n ø 1 in

both the hydrodynamic and the collisionsless limits.
Summing all contributions the equation of motion may

be written as

pnsvs 3 z 1 �g 2 pns�vn 3 z 1

Dvn 2 sy=T � DvL 1 gvL 3 z ,

(10)

where g � p�n 2 C�. Note that g ø 1 in the hydrody-
namic limit and g � pn in the collisionless limit at low
temperatures, where spectral flow is suppressed. Solving
Eq. (10) for vL and using E � B 3 vL we obtain the elec-
tric field

E �
B

D2 1 g2 �Dpnsvs 2 gpnsvs 3 z 2 Dpnsvn

2 �D2 1 g�g 2 pns��vn 3 z

1 gsy=T 1 Dsy=T 3 z	 . (11)

Expressions for the resistivity and the Hall angle are
obtained from Eq. (11) by requiring =T � 0 and vn � 0
as usual for current driven vortex motion. Using E �
rjs 2 rHjs 3 z with js � nsevs, we find

r �
BF0D

D2 1 g2 and rH �
BF0g

D2 1 g2 . (12)
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The Hall angle aH is given by tanaH � g�D. In the
hydrodynamic limit tanaH is small. As discussed above
the spectral flow force almost cancels the vL dependent
part of the Magnus (and Iordanskii) force, and vortices
move approximately at right angles with respect to the
supercurrent. In contrast, in the collisionless limit at low
temperatures spectral flow is suppressed yielding g �
pn ¿ D and we obtain r ! 0 and rH � BF0�pn. In
this limit vortices move with the superfluid, i.e., vL � vs.

Experiments on vortex dynamics in a temperature gradi-
ent are usually performed such that =T fi 0 and j � js 1

jn � 0. It is, however, important to realize that although
the total current j vanishes the components js and jn are
finite in general if =T fi 0. The reason is that a tempera-
ture gradient sets up a normal (quasiparticle) current [9,17]

jn � ennvn � 2LQP=T , (13)

which is compensated by a supercurrent js � 2jn. This
is well established for a superconductor in a temperature
gradient without an applied magnetic field. However, on
average it should be valid also in the mixed state [18]. The
coefficient LQP in a superconductor for elastic scattering
is given by [9,17]

LQP � LnG

µ
D

kBT

∂
� Ln

nn�T �
n

, (14)

where Ln � Sn�rn. Here Sn and rn are the normal state
thermopower and resistivity, respectively. The function
G�D�kBT � is the same function which governs the behav-
ior of the electronic thermal conductivity in the supercon-
ducting state. Its main temperature variation is due to the
decrease of the numbers of quasiparticles with decreasing
temperature (at least in the case of elastic impurity scatter-
ing) [9]. From Eqs. (13) and (14) and using that j � 0
requires nnvn � 2nsvs we obtain vn � 2Ln=T�en �
2nsvs�nn. Inserting this into Eq. (10) we obtain the equa-
tion of motion of a vortex in a temperature gradient:

F0Ln

µ
1 2

g

pn

∂
=T 3 z 2

µ
sy 1

DLn

en

∂
=T � DvL 1 gvL 3 z . (15)

Using g � p�n 2 C� the force perpendicular to =T may
be written as F0Ln�C�n�=T 3 z. Apparently, the spec-
tral flow plays the central role for this force. In particular,
the force is absent in the collisionless limit at low tempera-
tures, where C ! 0. Note, however, that in this limit the
Hall term ~ gvL 3 z is large.

The electric field is obtained from Eq. (11) as

E �
B

D2 1 g2

Ω
�DF0Ln 1 gsy�=T

1

∑
Dsy 1

D2Ln

en
2 gF0Ln

µ
1 2

g

pn

∂∏
=T 3 z

æ
.

(16)
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This yields for the thermopower

S � r
Sn

rn
1 tanaHr

sy

F0
, (17)

where Eq. (12) has been used. The interpretation is
straightforward: The first contribution to S results from
the motion of the normal fluid along the temperature gra-
dient. The second contribution is due to the heat carried
by the vortices which has a component perpendicular to
=T because of the finite Hall angle aH . For the Nernst
coefficient Eq. (16) yields

QB � r

µ
sy

F0
1

D
pn

Sn

rn

∂
2 tanaHr

Sn

rn

µ
1 2

g

pn

∂
.

(18)

The three contributions to Q have the following origin:
The first term arises from the motion of the vortex along
the temperature gradient. The second term arises since the
vortices have a component of motion perpendicular to the
temperature gradient due to the thermopower: The cou-
pling of this motion to the normal fluid via Dvn drags
normal fluid in this direction and therefore contributes to
the transverse voltage. The third term is the Nernst effect
of the normal fluid, as is apparent from comparison with
the result for the thermopower.

In order to derive results appropriate for the hydrody-
namic and collisionless limits we estimate the magnitude
of the various contributions to S and QB. Using sy �
10214 10213 J�Km [7,8] we find sy�F0 � 10
100 A�Km. Using Sn � 1 mV�K and rn � 1022 mV m
we obtain Sn�rn � 100 A�K m, comparable in magnitude
to sy�F0. D�n � v0t��1 1 v

2
0t2� is small in both the

hydrodynamic and the collisionless limits.
(a) Hydrodynamic limit (v0t ø 1).—In this limit

tanaH ø 1 and we find

S
Sn

�
r

rn
, (19)

QB � r
sy

F0
. (20)

Equation (19) is in very good agreement with experimen-
tal results on high-Tc superconductors [8,10,11]. Minor
deviations are related to the finite Hall angle [19]. Equa-
tion (20) is the usual expression relating the Nernst coef-
ficient, the flux flow resistivity, and the transport entropy.
It is frequently used to extract the transport entropy from
the experimental data [7,8].

(b) Collisionless limit (v0t ¿ 1).—New results are
obtained in this limit at low temperatures, where the
spectral flow is suppressed so that g � pn. This yields
tanaH ¿ 1 and we obtain

S � tanaHQB � tanaHr
sy

F0
�

Bsy

pn
. (21)

Apparently, the absence of spectral flow at low tempera-
tures leaves the heat carried by the moving vortices as the
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only source of thermomagnetic effects. Note, however,
that, since tanaH ¿ 1, vortices move almost perpendic-
ular to =T and the thermopower is larger than the Nernst
coefficient. It is instructive to consider also the heat flow in
this limit in the case of current driven vortex motion. The
heat current associated with the moving vortices is given
by jy

h � nysyTvL, where ny � B�F0 is the vortex den-
sity. At low temperatures we have ns � n and vL � vs �
js�ne. This yields jy

h � BsyTjs�pn � Pjs, where P is
the Peltier coefficient. Comparison to Eq. (21) shows that
P � ST , as is required by the Onsager relations [9].

It has been suggested that the thermopower can be under-
stood by assuming that no force perpendicular to vortices
results from the presence of the normal current, whereas
the supercurrent provides such a force [18]. However,
repeating the above calculation with this assumption it
is straightforward to show that S � �r�rn�SnG�D�kBT �.
This does not agree with experiment [8,10,11]. Therefore,
our considerations show clearly that the forces between
vortices and the normal fluid are essential for an under-
standing of the longitudinal thermomagnetic effects. In
particular, since the spectral flow depends on the electron
density n in the vortex core it leads to a thermopower in-
dependent of G�D�kBT �.

We finally comment on the influence of pinning. In high
temperature superconductors pinning effects are weak
above the so called irreversibility line and vortex motion
induced by a temperature gradient can be observed experi-
mentally in a broad range of temperatures and magnetic
fields (see e.g., [8,10–12]). In conventional superconduc-
tors pinning effects are usually much more pronounced so
that thermomagnetic effects have been observed only in a
narrow temperature range (see, e.g., [7,20]). We expect
that the main effect of pinning is a reduction of the flux
flow resistivity, which leads to a corresponding decrease
of the Nernst and Seebeck voltages according to Eqs. (19)
and (20). On the other hand, the transport entropy, the
thermal Hall angle, as well as the ratio of S and r should
be unaffected by pinning. This is consistent with recent
experimental results [21].

In summary, the spectral flow associated with moving
vortices in superconductors couples the motion of vortices
and of normal quasiparticles and gives rise to a heat cur-
rent perpendicular to the direction of vortex motion. This
leads to longitudinal thermomagnetic effects like the ther-
mopower and the Peltier effect. An analysis of vortex
motion in a temperature gradient on this basis yields excel-
lent agreement with experimental results. Vice versa, the
observation of large longitudinal thermomagnetic effects
provides strong experimental evidence for the relevance of
the spectral flow effect for the motion of vortices in super-
conductors.
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