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Observation of Spontaneous Flux Generation in a Multi-Josephson-Junction Loop
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We describe observations of spontaneous flux generation inside a YBa2Cu3O72d loop made of
214 Josephson junctions in series. The flux is generated spontaneously during cooldown into the
superconducting state. The experiment is motivated by the Kibble-Zurek scenario of formation of
topological defects in condensed matter systems. The transition from decoupled superconducting
segments into a coherent loop is determined by the strength of thermal fluctuations in the junctions.
Values of the flux measured at the end of each cooldown follow a normal distribution, and are consistent
with the instantaneous phase differences across the junctions adding up as the loop becomes coherent.

PACS numbers: 74.50.+r, 03.75.Fi, 11.15.Ex, 74.40.+k
Some years ago, Zurek [1] proposed that condensed
matter systems having a complex order parameter can be
used to test a certain class of early universe theories dis-
cussed by Kibble and co-workers [2,3]. It was suggested
that during the transition to an ordered state, while the
system is out of equilibrium, separate regions are formed
having random values of the phase of the order para-
meter. If such regions become connected in the form of
a loop, and the sum of the phase differences exceeds 2p, a
topological defect is created [1,2,4]. For example, in a su-
perconductor this implies that there will be a spontaneous
supercurrent around the loop, and trapped flux. The dis-
cussion as to whether this scenario is viable was linked to
the basic question of the meaning of the phase of the or-
der parameter [4–6], especially in the case where several
unconnected regions exist. Obviously, the confirmation of
this scenario would be of great importance. Among the
candidates predicted to show this behavior are supercon-
ductors, superfluids, or Bose-Einstein condensates. How-
ever, experimental tests of this hypothesis on bulk systems
gave conflicting results. Spontaneous nucleation of topo-
logical defects following a quench was observed in liquid
crystals (disclinations) [7] and in superfluid 3He (vortices)
[8,9], but not in 4He [10]. Similarly, no spontaneous flux
was detected in a bulk high temperature superconductor
[11]. In order to try to resolve this situation, it is impor-
tant to test the very basis of this hypothesis, at the level of
what happens in a single loop. To that end, we designed
such an experiment to search for spontaneous flux genera-
tion in a single loop composed of many superconducting
segments having random phase differences, which then be-
come connected.

In our experiment we use a YBa2Cu3O72d (YBCO)
loop, interrupted by 214 grain-boundary Josephson junc-
tions in series. The loop is patterned from a 700 Å epi-
taxial c-axis-oriented YBCO film, grown on 24± SrTiO3
bicrystal substrate, 1 3 1 cm2 size (for properties of grain
boundaries in YBCO, see Refs. [12,13]). The pattern,
shown in Fig. 1, is a 20 mm wide meander line. Each
time this line crosses the grain boundary, another Joseph-
son junction is added [14]. The area of the loop is 0.3 cm2.
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The number of junctions is limited by the maximal num-
ber of 20 mm-wide segments we can insert along the grain
boundary line.

The experimental setup and the measuring method are
basically the same as described previously [11]. Briefly,
in order to measure the flux threading the loop we use a
high temperature SQUID magnetometer placed close to the
sample. The sample is heated above Tc �� 90 K�, using
a light beam, and is cooled via a thermal link to liquid ni-
trogen through helium exchange gas. In this way we avoid
any stray magnetic fields due to electrical currents driving
a conventional heater. The SQUID is maintained at a con-
stant temperature of 77 K, independent of the sample. The
noise level of the SQUID corresponds to an uncertainty of
61.5f0 inside the loop. The external magnetic field at the
sample was shielded to better than 1024 G. This residual
field could be varied using a small in situ coil.

By using the SQUID, a continuous measurement of
the flux through the loop is performed while cooling the
sample from �100 to 77 K. At Tc�� 90 K�, segments of

grain boundary

SQUID
pickup coil

FIG. 1. A schematic representation of the loop pattern on the
bicrystal substrate (solid line). The dashed line outlines the
input coil of the SQUID. The enlarged area shows the super-
conducting meander line crossing the grain boundary, forming
Josephson junctions in the process.
© 2000 The American Physical Society



VOLUME 84, NUMBER 21 P H Y S I C A L R E V I E W L E T T E R S 22 MAY 2000
the film separating the junctions become superconducting.
However, the junctions are still normal and thus the su-
perconducting segments are effectively separate. As the
temperature decreases, the critical currents of the junc-
tions increase, and eventually the loop becomes coherent.
Indeed, the measurements show that spontaneous flux is
trapped in the loop. A series of such measurements is
shown in the top part of Fig. 2. For clarity, we display the
final part of each measurement, where the temperature is
already stable and flux inside the loop is constant (we ac-
tually continue the measurement for a much longer time to
ascertain that). The sign and magnitude of the flux appear
random from one cooldown to the next. The bottom part
of Fig. 2 shows control experiments, done in exactly the
same way, except that a blank substrate was used instead of
the superconducting loop. The control experiment clearly
shows that the trapped flux has nothing to do with residual
field noise. We repeated the measurements under different
residual fields (1022 to 1024 G) and at different cooling
rates (20 to 0.3 K�sec), and found that the data were inde-
pendent of both these factors over 2 orders of magnitude.

The distance between the loop and the SQUID is 1 mm.
The measured coupling ratio of flux inside the loop to the
SQUID is 0.37. If there are some vortices pinned inside
the film itself or in the junctions, their coupling to the
SQUID will be much smaller because the field lines will
close around the superconducting strip, at a typical dis-
tance comparable to the width �20 mm�, i.e., much less
then the distance to the SQUID. Thus, we are only sensi-
tive to the flux which is inside the loop.

FIG. 2. The top part shows a typical sequence of stable values
of the spontaneous flux in the loop measured by the SQUID dur-
ing several consecutive cooling cycles. The bottom part shows
identical reference measurements with a blank substrate.
In Fig. 3 we show the distribution of the stable flux
levels inside the loop. The histogram contains the data
obtained during 166 cooldowns. The standard deviation of
the distribution is 7.4 6 0.7f0. The error bars here refer
to the uncertainty in the absolute calibration of the flux
sensitivity of our system. The solid line is a fit of the data
to a normal distribution.

The specific properties of our system differ in several
respects from that of the generic Kibble-Zurek scenario.
However, the basic concept of linking segments with
random phases is tested in our experiment. The Kib-
ble-Zurek mechanism requires the freezing of the value of
the cumulative phase difference around the loop by means
of a thermal quench through the critical region. In our
case, we propose that the total phase difference around
the loop reflects the thermal fluctuations of the phase dif-
ferences across the junctions at the time the loop becomes
coherent. In the original Kibble-Zurek mechanism the
cooling rate of the sample is crucial since it affects
the value of the freeze-out coherence length (the size of
the segments). In our experiment the physical size of the
segments is constant ��60 mm�. Each segment reaches
internal equilibrium long before the junctions. Thus,
the cooling rate should not matter in our setup, as in-
deed observed. Thermal fluctuations in grain boundary
junctions were discussed in several publications [12,15].
During cooldown, the segments between adjacent junc-
tions become superconducting at Tc while the maximum
Josephson current Ic, is still small. At this stage, the
coupling energy of the junction, EJ � Icf0�p is much
smaller than kBT . The various segments are effectively
uncoupled and the loop is incoherent. In the original
scenario, this situation is equivalent to a loop made

FIG. 3. The distribution of the values of spontaneous flux in-
side the loop, taken from 166 cycles. Values falling within
61.5f0, i.e., within the noise level of the SQUID, are binned
together. The solid line is a fit of the data to normal distributions
with standard deviation of 7.4f0.
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up of bubbles which are yet unconnected. Thermal
fluctuations of individual junctions are described by a
probability to have a random phase difference di given
by P�di� � exp�2Icf0 3 �1 2 cosdi���2pkBT ��, where
i refers to the ith junction [12,16] (here di is the gauge
invariant phase difference). Any time a fluctuation occurs
changing di by $2p, the whole loop becomes incoherent,
meaning that the topological charge has changed (the
maximal energy barrier corresponds to a change by p ,
and a change larger than 2p “opens” the loop). At this
stage the fluctuating supercurrent through each of the
junctions will be balanced locally by a reverse normal
current, and there is no supercurrent flowing around
the loop. As the temperature decreases, Ic increases
and with it the coupling energy. Individual fluctuations
still exist, but di is less likely to jump by 2p . At this
stage, the loop becomes coherent and a supercurrent
can flow around the loop. While the loop is closed,
small thermal fluctuations do not change the topological
charge of the loop. As the loop cools, it closes and opens
many times. Experimentally, this manifests itself as flux
noise.

The loop can be considered as finally closed if the
probability for di to jump by 2p during the time inter-
val of the measurement (typically, 1 min) is small. A
lower limit on the time interval between such events is
h̄�kBT 3 exp�Icf0�pkBT �. This time interval reaches
1 min once Ic � 60 mA �EJ � 30kBT�. Typically, Ic of
junctions such as used here reaches 60 mA, 5 7 K below
Tc (Ic cannot be measured directly in our setup, but we
do see a significant reduction of the measured flux noise
during cooldown in this range of temperatures, which in-
dicates that the loop indeed is closed). In the closed state,
the total flux F � LI , where L is the inductance of the
loop and I is the supercurrent. The flux F is given by
the sum of all of the phase differences around the loop
F � f0

P
i di�2p . It is important to emphasize that

if the loop becomes coherent via sequential locking of
more and more junctions, in the end it will reach the true
ground state of the system with zero flux. Similarly, a
mechanism of thermally activated trapping of flux inside
the loop via single flux quanta passing through individual
junctions (during a possible equilibrium cooling process)
should leave no flux at the end of the cooldown since the
loop will decay into the ground state. Only the presence
of thermal fluctuations in all of the junctions enables the
existence of random phase differences at the moment the
loop becomes closed, and, hence, a finite flux.

The time scale for a flux quantum to pass through a
junction is tJ 	 0.3f0�RJIc �RJ 	 1 V is the normal
resistance of a junction) [16]. In our case tJ 	 10211 sec,
at Ic � 60 mA. The time it takes the order parameter to
adjust across the whole loop in this range of temperature is
of the order top � �1 cm� 3 t�j (the speed of the order
parameter is j�t, with the coherence length j � 16 Å
and the relaxation time of the order parameter
t � 10212 sec). We find top 	 1025 sec. Finally, there
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is the electric time constant for closing the loop, L�RT ,
where RT is the series resistance of the junctions which
are still normal at that instant (we estimate RT 	 10 V).
For our system, L � 4p 3 1029r ln�r�a� H, the radius
r � 0.3 cm and the width a � 2 3 1023 cm, yield-
ing L � 20 nH. The value of L�RT comes out in the
1029 sec range. Since this is much shorter than top , it
is unimportant here. Comparing the time scales, we get
tJ ø top , meaning that the final connection of the super-
conducting regions into a coherent loop can be considered
as instantaneous. Thus, this particular condition of the
Kibble-Zurek mechanism is satisfied in our case, despite
the relatively slow cooling rate of the experiment. It is
the continuous presence of fluctuations, large and small,
which occur at a rate much faster than t21

op throughout
the experimental temperature range, which validates the
analogy with the Kibble-Zurek scenario.

After the loop is closed, any further change of the flux
trapped in the loop requires a global fluctuation of the
whole loop, with an energy barrier E6 � EJ 1 f

2
0�8L 6

nf
2
0�2L, where the �6� depends on whether the flux in-

creases or decreases [17]. Since L is large, jf
2
0�8L 6

nf
2
0�2Lj ø EJ , and the probability for a flux change con-

tinues to be dominated by the coupling energy. At Ic �
60 mA and n � 30, E6 � 30kBT , enough to prevent flux
jumps between metastable states of the whole loop. In the
experiment, we see trapped flux up to �30f0. The energy
needed to support nf0 in the loop is n2f

2
0�2L 	 n2 3

kBT�10. Putting n � 30 gives an energy of 90kBT , which
means that this large value of the flux would be unlikely to
appear as a result of fluctuations at thermal equilibrium. It
may be created only via a nonequilibrium mechanism, such
as discussed above. The required energy comes from the
coupling energy of the junctions during the closure of the
loop (with our assumption Icf0�p � 30kBT , one needs
only the energy of a few junctions).

Let us consider the magnitude of the spontaneous flux
one can expect from the above mechanism. In the pic-
ture of the Kibble-Zurek mechanism, one usually considers
the geodesic rule, which is just an assumption of minimal
energy and, thus, a minimal phase gradient between ad-
jacent segments [2,18]. In this model the average phase
difference in a sense of a random walk is drms � p�2,
and the rms number of flux quanta in the loop is given by
nrms �

1
2p drms 3

p
N with N being the number of seg-

ments. In our experiment this should give nrms � 3.6,
however, we actually get nrms � 7.4 6 0.7. One possible
reason is that the usual geodesic rule does not apply in the
case of Josephson junctions, since the energy is propor-
tional to cos�d� instead of the phase gradient squared. For
example, in a junction, d � p�2 costs the same energy as
d � 23p�2.

A somewhat better estimate of nrms can be done us-
ing the probability distribution P�d� of a junction. The
average contribution of each junction to the total phase
difference, in the sense of a random walk, is 
d2�1�2 �
��

R
d2P�d�dd���

R
P�d�dd�
1�2. In its coherent state, the



VOLUME 84, NUMBER 21 P H Y S I C A L R E V I E W L E T T E R S 22 MAY 2000
maximal phase difference across the junction is #2p be-
cause otherwise a flux quantum is added or taken out of
the loop. Consequently, the range of the integration is
�22p , 2p�. In order to take into account the spread of
Ic’s (and hence EJ ’s) between the junctions, we calcu-
lated 
d2�1�2 for 6 , EJ�kBT , 30. A direct measure-
ment of the spread of Ic’s was impossible in our particular
setup, however our experience with this type of junction
suggests a spread by a factor of 3. Hence, taking a factor
of 5 is on the safe side. The results for drms � 
d2�1�2

calculated this way are 1.31p , drms , 1.37p . We find
that 9.6 , nrms , 10, in reasonable agreement with the
data. Thus, a scenario in which separate superconducting
regions having different phases become connected preserv-
ing the total phase difference around the loop, seems a
good starting point to understand the experimental results.
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