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Quasi-Long-Range Order in Nematics Confined in Random Porous Media
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We study the effect of random porous matrices on the ordering in nematic liquid crystals. The ran-
domness destroys orientational long-range order and drives the liquid crystal into a glass state. We
predict two glass phases, one of which possesses quasi-long-range order. In this state the correlation
length is infinite and the correlation function of the order parameter obeys a power dependence on the
distance. The small-angle light-scattering amplitude diverges but slower than in the bulk nematic. In the
uniaxially strained porous matrices two new phases emerge. One type of strain induces an anisotropic
quasi-long-range-ordered state while the other stabilizes nematic long-range order.

PACS numbers: 64.70.Md, 61.30.Gd, 82.70.–y
Quenched disorder is inevitably present even in the most
pure solids. This explains a lot of phenomena, e.g., the
residual resistance of metals. On the other hand, liquids
are usually homogeneous and introducing quenched disor-
der in them requires special efforts. One of the approaches
consists in pouring a liquid into a randomly intercon-
nected network of pores. Such liquid-porous-matrix sys-
tems emerge in many natural and technological processes
giving rise to a lasting scientific activity. The recent surge
of interest in the field is due to a new micropore material:
silica aerogel. Its density can be varied in a wide range
up to more than 99% void volume fraction. This allows
the investigation of both strongly and weakly confined
fluids. The most interesting situation emerges in systems
with many degrees of freedom, e.g., He-3 [1] and liquid
crystals [2–7]. In these substances the porous matrix not
only geometrically confines the liquid but also induces a
random orienting field that fixes the direction of the order
parameter near the surface of the matrix. The random-field
(RF) disorder is known to cause spin-glass effects [8] and
such phenomena were indeed observed experimentally in
liquid-crystal-aerogel systems. In particular, a slow glassy
dynamics was reported in Refs. [2,3]. Another effect of
the disorder is the suppression of the isotropic-nematic
phase transition.

In many experiments [2,4,5] the sharp isotropic-nematic
transition inherent to the bulk liquid crystal was substituted
by continuous ordering. The genuine phase transition was
observed [6] only in highly porous aerogels. However,
even these systems do not have nematic long-range order
(LRO) as follows from the Imry-Ma argument [9,10] and
the results of deuteron NMR measurements [7]. Hence, a
question arises about the nature of the new phase emerging
below the transition. This issue was addressed in several
recent numerical simulations [11–14]. Most of them used
simplified models with a discrete symmetry [11–13]. Al-
though the structure of the phase diagram [11–13] agrees
with the experiments the nematic LRO emerging in these
models is an artifact of the discrete symmetry which allows
LRO in three-dimensional RF systems [9]. An attempt to
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investigate numerically a more realistic continuous model
[14] suggested an interesting scenario of quasi-long-range
order (QLRO) that is the infinite correlation length and
power dependences of the correlation functions on the dis-
tance. However, the results of Ref. [14] should be taken
with care since the Imry-Ma domain length [15] is compa-
rable with the sample size used for this simulation.

In the absence of reliable numerical results analytical
approaches are especially desirable. However, the existing
theory [13] does not extend beyond the mean field approxi-
mation. As in the other RF problems it underestimates
fluctuations and incorrectly predicts nematic LRO. The
present paper for the first time studies the low-temperature
phase of disordered nematics beyond the mean field the-
ory. We apply the functional renormalization group (RG)
in 4 2 e dimensions. RG flows have different character
depending on the type of ordering. LRO corresponds to
the fixed point in which the disorder and temperature are
zero. If there is only short-range order the RG flow enters a
strong coupling regime. A nontrivial fixed point describes
QLRO. It was known for a long time that QLRO is pos-
sible in two-dimensional pure systems with the Abelian
symmetry [16]. Recently the same type of ordering was
discovered in three-dimensional RF systems [17,18]. In
these systems QLRO is not prohibited by the non-Abelian
symmetry [19]. Thus, QLRO is more common in disor-
dered systems than clean ones. We demonstrate that QLRO
emerges in our problem whereas LRO is absent. An ex-
perimental signature of this ordering is the divergence of
the small-angle light-scattering cross section (9).

The free energy density F � Fd 1 Fpm of the ne-
matic in the porous matrix includes the Frank distortion
energy [20] Fd � �K1�divn�2 1 K2�n curln�2 1 K3�n 3

curln�2��2, where n is the director, and the interaction
Fpm with the surface of the random matrix. The interac-
tion tends to align the director parallel to the surface [21].
We model the interaction as Fpm � �hn�2, where h is a
random vector representing the normal to the surface. This
is the simplest choice compatible with the equivalence of
the opposite orientations of the director. Because of the
© 2000 The American Physical Society
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universality the model captures all large-scale physics and
allows quantitative prediction of the critical exponents in
the QLRO state. The average amplitude of the random
vector h is a measure of the disorder strength. It is a
phenomenological parameter which depends on the pore
size, anchoring energy, and fractal structure of the porous
matrix. The microscopic expression for h is discussed
in Ref. [22].

In the one-constant approximation K1 � K2 � K3 the
energy F � Fd 1 Fpm reduces to the Hamiltonian of the
random-anisotropy (RA) Heisenberg model [19]. Since
that model possesses QLRO the same ordering is expected
for the randomly confined nematic. However, in all ne-
matics K1,K3 . K2 and this could change the critical ex-
ponents of the correlation functions in the QLRO state in
comparison with the random Heisenberg model. Below
we demonstrate that this is not the case, i.e., the nematic
in the porous matrix belongs to the universality class of
the RA Heisenberg model. To get a simple idea why it oc-
curs we first consider a two-dimensional nematic film with
the director n � �nx , ny , nz� � �cosf, sinf, 0� confined
in the plane xy of the film in the absence of the disorder.
The Frank energy is Fd � �K1 1 K3� �=f�2�2 1 �K3 2

K1� �cos2f��≠xf�2 2 �≠yf�2��2 1 sin2f≠xf≠yf�. The
low-temperature phase of this system possesses QLRO,
only the term �K1 1 K3� �=f�2�2 being relevant at the
large scales since �sin2f	 � �cos2f	 � 0.

The systematic consideration is based on the RG equa-
tions in 4 2 e dimensions. Our method follows the line of
Ref. [19] and is briefly described below. It is convenient
to eliminate the disorder with the replica trick [23]. We
search for a zero-temperature fixed point. We ascribe the
scaling dimension 0 to the director n. Then the scaling di-
mension of the temperature DT � 22 1 O�e�. Any term
of the effective replica Hamiltonian containing m different
replica indices is proportional [24] to 1�Tm21. This allows
us to show that all operators with three or more replica
indices are irrelevant [24]. Hence, all relevant operators
of the appropriate symmetry are included in the following
replica Hamiltonian:
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where a, b are replica indices, a, b � x, y, z label the spa-
tial coordinates, l1 � K2, l2 � K1 2 K2, l3 � K3 2

K2, T is the temperature, the function R�z� describes the
disorder, and the summation over the repeated indices a

and b is assumed. Because of the symmetry na $ 2na

the function R�z� is even. Below we measure the tem-
perature in units of K2, and hence set l1 � 1. To define
the energy in 4 2 e dimensions we add to the Hamilto-
nian (1) the term l0

P
ab ≠an

a
b≠an

a
b�2, where a labels

the coordinates in the �1 2 e�-dimensional subspace, b �
x, y, z. The stability conditions [20] K1,K3 . 0 lead to
the inequality

l2, l3 . 21 . (2)

We represent each replica na�x� of the director as a
combination of small-scale fields f

a
i �x�, i � 1, 2 and a

large-scale field n0a�x� of the unit length:
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(3)

where the unit vectors eai �x� are perpendicular to each
other and the vector n0a�x�. The fields fi change at small
scales a , r , L, where a is the molecule size, L ¿ a.
The field n0 changes at the scales r . L. The RG pro-
cedure consists in integrating out the small-scale fields fi

and the rescaling such that the effective Hamiltonian of
the field n0 would have the structure (1) with new con-
stants. The rescaling is defined in such a way that l1 � 1
remains unchanged. The RG equations in the first order in
e � 4 2 D read
dT
d lnL

� 2�D 2 2�T 1 �1 2 l3�CfT ;

dl2

d lnL
� 2l2�1 1 l3�Cf ;

dl3

d lnL
� 2�3l3 1 l2

3 2 l2�Cf ,

(4)

where the constant

Cf �
dR�z � 1��dz

8p2
p
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∑
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1
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∏
(5)

describes the fluctuations of the small-scale fields

�f2
1	 � �f2

2	 � Cf ln�L�a� . (6)

We omit the RG equations for l0 and R�z� since their
structure is irrelevant below. Equations (4) have the only
fixed point compatible with the stability conditions (2).
In this fixed point T � l2 � l3 � 0 and Eq. (1) reduces
to the Hamiltonian of the RA Heisenberg model which
thus describes the large-distance physics of the randomly
confined nematic. Since that model possesses QLRO in its
low-temperature phase for weak disorder, QLRO is also
possible in confined nematics. For strong disorder or high
temperature the ordering disappears. Thus, there are three
phases: the high-temperature isotropic phase and two low-
temperature glass phases with and without QLRO. In both
glass phases the local orientation of the director is fixed
by the random potential. As discussed below the disorder
driven transition between the glass phases is related with
topological defects.

The large-scale correlations of the director lead to strong
small-angle light scattering. We determine its intensity
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in the limit of the weak optical anisotropy, i.e., assuming
that in the dielectric tensor eab � e�dab 1 eananb the
anisotropic term ea ø e�. In this case the scattering cross
section can be found with the Born approximation. The
scattering cross section with the change of the wave vector
by q is given by the expression [20]

s�q� � jv2��4pc2�iaeab�q�fbj2, (7)

where v is the light frequency, i and f are the unit vectors
specifying the initial and final polarizations, and eab�q�
is the Fourier transform of the dielectric tensor. Hence,
4888
s�q� 
 �Qab�q�Qab�2q�	, where Qab � nanb 2

dab�3 is the order parameter and the angular brackets de-
note the disorder and thermal averages. In contrast to the
bulk nematic the scattering is caused not by the thermal
fluctuations but by the frozen configuration of the director.
The cross section s�q� is proportional to the Fourier trans-
form of the correlation function G�r� � �Qab�0�Qab�r�	.
In the QLRO state this correlator obeys a power de-
pendence on the distance G�r� 
 r2h . To calculate the
exponent h we decompose Qab into small-scale and large-
scale parts with Eq. (3) and average over the small-scale
fluctuations with Eq. (6):
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where Q0
ab � n0an

0
b 2 dab�3, �· · ·	 denotes the average

over the fluctuations of f, and the relation �fifj	 
 dij

which is valid in the RA Heisenberg fixed point is used.
The constant Cf � 0.309e [Eq. (6)] is the same as in the
fixed point of the RA Heisenberg model [19]. The expo-
nent h can be found with the iterative use of Eq. (8) at each
RG step until the scale L � r is reached. At the scale r the
values of the renormalized director field n0 are the same at
the points 0 and r. Hence, Q0

ab�0�Q0
ab�r� 
 1 and r2h 


�1 2 6Cf lnL�a�K , where K � ln�r�a�� ln�L�a� is the
number of the RG steps. Thus, h � 6Cf. The small-
angle scattering cross section is given by the expression

s�q� 
 q2D1h � q2412.9e . (9)

The uniaxial stress modifies the large-distance behav-
ior. The compression along the z axis can be described
by adding to the Hamiltonian the term FS � An2

z , where
A . 0, since the deformation tends to make the pore
surfaces parallel to the xy plane and hence favors the
planar configuration of the director. The uniaxial stretch
is described by FS � An2

z with a negative A. In both
cases A is proportional to the deformation. The effect of
the electric field is analogous to the effect of the stress but
the sign of the electric energy [20] Fe � 2ea�nE�2�8p

is fixed for a given substance. The RG flow is unstable
with respect to the perturbation FS and new regimes
emerge at the scale R � Rc at which the renormalized
A�R� 
 1. The critical length Rc can be found analogously
to the correlation length of the RA Heisenberg model in
the uniform magnetic field [19]. At small A the result is
Rc 
 jAj21��222Cf� � jAj20.520.15e . The stretched sys-
tem is long range ordered at the scales R . Rc. The
nematic order parameter can be calculated analogously
to the magnetization of the RA Heisenberg model in the
uniform magnetic field and is given by the formula Q �

�nanb 2 dab�3	 
 R
23Cf

c 
 jAj0.46e . LRO can also be
achieved by applying an arbitrarily weak external mag-
netic field to the confined nematic since the magnetic
contribution to the energy [20] Fm � 2xa�nH�2�2 has
the same structure as the energy related with the uniaxial
stretch. A more interesting situation emerges under the
compression. The director averaged over a scale R . Rc

is confined in the xy plane. The system is thus described
by the RA XY model. It possesses QLRO but the critical
exponents are different from the exponents of the Heisen-
berg model. Thus, at the scale Rc the crossover from
one QLRO state to another occurs. Using the RA XY
fixed point found in Ref. [19] and repeating the derivation
of Eq. (9) one finds the Born light-scattering cross sec-
tion for q , 1�Rc: s�q� 
 q241e�11p2�9�. In the RA XY
regime the cross section (7) is anisotropic: the small-angle
scattering is suppressed, if the incident or scattered light is
polarized along the compression direction.

Our RG procedure is based on the decomposition (3)
which makes sense only if the director change is slow at
the microscopic scale a. This condition is broken in the
core of a topological defect. There are two types of the
defects: disclination loops and point defects [20]. The dis-
clination loop is a line the rotation by 2p around which
reverses the director: n ! 2n. The structure of the point
defect is analogous to the structure of the hedgehog in the
Heisenberg model. The topological defects are irrelevant
at small e � 4 2 D for weak disorder. This can be un-
derstood from the consideration of the contribution of the
disclination loops and the pairs of point defects of size
l ¿ a to the RG equations at the scale l. After averaging
over the small-scale fluctuations the size l of the topologi-
cal excitations plays the role of the ultraviolet cutoff. The
renormalized temperature is small: T �l� ø 1. Hence, the
thermal fluctuations are irrelevant. The disorder-induced
term R�nanb� 
 e in the renormalized replica Hamilto-
nian (1) is of order �h4	, where the random vector h
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describes the (renormalized) random anisotropy Fpm �
�hn�2, �· · ·	 denotes the average over the realizations of the
disorder. Inside a defect the director change is of the order
of 1 at the cutoff scale. Hence, the elastic excitation energy
determined by the renormalized Hamiltonian H�l� (1) can
be compensated by the interaction with the disorder only
in the positions where h 
 1. The concentration of such
positions is exponentially small 
 exp�21�e�. Thus, the
defects produce the corrections of order exp�21�e� to the
RG equations and do not modify the results of the paper
qualitatively. The concentration of the topological excita-
tions of size l is not more than of order l2D exp�21�e�.
The above discussion is valid, if the disorder is weak. In
the case of the strong disorder the topological defects are
present at the microscopic scale a and QLRO is absent.
Thus, the topological defects drive the system into another
glass state in which the orientation of the director is de-
termined only by the local random potential. The critical
strength of disorder at which QLRO disappears can be es-
timated by comparison of the elastic and random contribu-
tions to the energy. Since the Frank constants have usually
the same order, QLRO is stable for a2�h2	 & K1,2,3. The
irrelevance of the topological defects for weak disorder
can also be demonstrated with the energy argument [18]
modified to take into account the scale dependence of the
interaction. A possible fractal structure of the large discli-
nation loops can lead to their strong suppression [25].

Recently it was suggested that the RF model (1) de-
scribes nematic elastomers [26]. However, it is unclear if
this model and hence the above results are applicable to ne-
matic elastomers because of elasticity-mediated nonlocal
interactions in these substances [27]. The nonlocal dipole
interactions are present also in the amorphous magnets
which could be described by the RA Heisenberg model
in the absence of the dipole forces. The effect of the long-
range interactions on the stability of QLRO is an open
question. Such forces are absent in randomly confined
nematics which provide a genuine realization of the RA
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anisotropic
QLRO

isotropic
QLRO

Q 1

h2 /T
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FIG. 1. The phase diagram in the one-constant approximation
K � K1 � K2 � K3. h̄2 is the average square of the random
field, T the temperature, A the anisotropy, and a the molecule
size. Isotropic QLRO exists in region OXQ that is the border
between the LRO and anisotropic QLRO phases. Surfaces OLQ
and OQQ1 indicate the borders between the region of SRO and
the regions with LRO and anisotropic QLRO, respectively.
Heisenberg model and can be used for an experimental test
of the possibility of QLRO in the non-Abelian systems. In
conclusion, we have demonstrated that weakly disordered
nematics possess QLRO in their low-temperature phase
while LRO is absent for arbitrarily weak disorder. The uni-
axial stretch and the external magnetic field stabilize LRO,
and the uniaxial compression drives the liquid crystal into
another QLRO state (see the phase diagram Fig. 1).
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