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Universal Distributions for Growth Processes in 1 1 1 Dimensions and Random Matrices
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We develop a scaling theory for Kardar-Parisi-Zhang growth in one dimension by a detailed study of
the polynuclear growth model. In particular, we identify three universal distributions for shape fluctua-
tions and their dependence on the macroscopic shape. These distribution functions are computed using
the partition function of Gaussian random matrices in a cosine potential.
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Growth processes lead to a rich variety of macroscopic
patterns and shapes [1]. As has been recognized for some
time, growth may also give rise to intriguing statistical
fluctuations comparable to thermal fluctuations at a
critical point. One of the most prominent examples is the
Kardar-Parisi-Zhang (KPZ) universality class [2]. In
essence one models a stable phase which grows into an
unstable phase through aggregation, as, for example, in
Eden-type models where perimeter sites of a given cluster
are filled up randomly. In real materials, mere aggregation
is often too simplistic an assumption and one would have
to take other dynamical modes, such as surface diffusion,
at the stable/unstable interface into account [3]. In our
Letter we remain within the KPZ class.

From the beginning there has been evidence that in one
spatial dimension KPZ growth processes are linked to ex-
actly soluble models of two-dimensional statistical me-
chanics. Kardar [4] mapped growth to the directed polymer
problem. The replica trick then yields the Bose gas with at-
tractive d interaction which in one dimension can be solved
through the Bethe ansatz [5]. In [6], considerably gener-
alized in [7], for a particular discrete growth model the
statistical weights for the local slopes were mapped onto
the six vertex model. To solve the six vertex model one
diagonalizes the transfer matrix, again, through the Bethe
ansatz, which also allows for a study of finite size scal-
ing [8]. Unfortunately none of these methods goes beyond
what corresponds to the free energy in the six vertex model
and the associated dynamical scaling exponent b � 1�3.

In this Letter we point out that within the KPZ univer-
sality class the polynuclear growth (PNG) model plays a
distinguished role: it maps onto random permutations, the
height being the length of the longest increasing subse-
quence of such a permutation, and thereby onto Gaussian
random matrices [9,10]. We use these mappings to ob-
tain an analytic expression for certain scaling distributions,
which then leads to an understanding of how the self-
similar height fluctuations depend on the initial conditions
and to a more refined scaling theory for KPZ growth.

PNG is a simplified model for layer by layer growth
[1]. One starts with a perfectly flat crystal in contact with
its supersaturated vapor. Once in a while a supercritical
nucleus is formed, which then spreads laterally by further
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attachment of particles at its perimeter sites. Such islands
coalesce if they are in the same layer and further islands
may be nucleated upon already existing ones. The PNG
model ignores the lateral lattice structure and assumes that
the islands are circular and spread at constant speed. The
nucleation rate and the lateral speed can be set to one by
the appropriate choice of space-time units.

We specialize to a one-dimensional surface, returning
to higher dimensions at the end. The height, h�x, t�, at
time t above the point x on the substrate is counted in
lattice spacings. The upward steps of h move determin-
istically with velocity 21, the downward steps with ve-
locity 11, and they annihilate upon touching. Through a
nucleation event at �x, t�, randomly in space-time, h in-
creases at x by one unit thereby creating a new up-down
pair of steps. To explain the mapping from PNG to per-
mutations it is convenient to first use a droplet geometry,
where a single island starts spreading from the origin and
further nucleations take place only above this ground layer.
The initially flat substrate and other initial conditions will
be handled along the lines of this blueprint.

We want to compute the height h�x, t� of the droplet.
Clearly it is determined by the set of nucleation
events inside the rectangle R�x,t� � ��x0, t0�:jx0j #

t0 and jx 2 x0j # t 2 t0�. In lightlike coordinates,
r � �t0 1 x0��

p
2, s � �t0 2 x0��

p
2, the rectangle

R�x,t� equals �0, R� 3 �0, S� with R � �t 1 x��
p

2, S �
�t 2 x��

p
2. We label the nucleation events as �rn, sn�,

n � 1, . . . , N , such that 0 # r1 , · · · , rN # R.
The corresponding order in the second coordinate s,
0 # sp�1� , · · · , sp�N� # V , defines then a permutation
p of length N; compare with Fig. 1.

There is a simple rule of how to determine the number
of the layer in which each nucleation event is located.
Points in layer 1 are obtained by scanning the permutation
�p�1�, . . . , p�N�� from left to right and marking all those
entries which are smaller than the so far smallest. After
deleting the subsequence of the first layer, the second layer
is obtained by repeating this construction. One marks those
of the remaining entries of the permutation which are in
decreasing order. At the end the permutation p has been
subdivided into decreasing subsequences. In the example
of Fig. 1 we have the permutation �4, 7, 5, 2, 8, 1, 3, 6�. The
© 2000 The American Physical Society
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FIG. 1. The height h of a PNG droplet with nucleation events
corresponding to the permutation �4, 7, 5, 2, 8, 1, 3, 6�.

first decreasing subsequence is �4, 2, 1�, corresponding to
the nucleation events in the first layer. The remaining
subsequences are �7, 5, 3� and �8, 6�. The height h�x, t� is
the number of these subsequences and therefore the length
of the longest increasing subsequence of p [10].

In a dual picture one draws a directed path from �0, 0�
to �x, t�, joining nucleation events by straight lines, with
the restriction that both coordinates r and s are increasing
along the path. Equivalently, the path must be in the
forward light cone at each nucleation event. This is the
celebrated directed polymer, cf., for example, [1], in
the context of the PNG model. If to each path we assign
as negative energy the number of nucleation centers
traversed, then h�x, t� equals the ground state energy of
the directed polymer. The PNG model is thus in the strong
coupling regime.

The nucleation events have density one and are inde-
pendently and uniformly distributed in the rectangle R�x,t�
with area l � �t2 2 x2��2. This induces a Poisson dis-
tribution for the length, N , of the permutation, Prob�N �
n� � e2lln�n!, and for a given length n each permutation
has the same probability, namely, 1�n!. Thus the problem
of computing the distribution of the height h�x, t� is con-
verted into determining the statistics of the length, l, of a
longest increasing subsequence of a random permutation.
Since to leading order h�x, t� ~ t, l must be of order

p
l

and the relative fluctuations should be of order l1�6, if we
accept b � 1�3 for KPZ growth in the 1 1 1 dimension.

The same construction can be carried out for an initially
flat substrate. By translation invariance, it suffices to study
H�t� � h�0, t�. The rectangle R�0,t� is now replaced by
the triangle Tt � ��x0, t0�:jx0j # t 2 t0, t0 $ 0�. To relate
to the directed polymer we add the mirror image relative
to t � 0, including the nucleation events, to obtain the
square Rt � ��x0, t0�:jx0j # t 2 jt0 j�. Then 2H�t� equals
again the ground state energy of the directed polymer from
�0, 2t� to �0, t�. However, the statistics of nucleation cen-
ters inside Rt is constrained to satisfy the reflection sym-
metry relative to t � 0.

For a random permutation with Poisson distributed
length N , �N	 � l, the length l of the longest increasing
subsequence satisfies the amazing identity

Prob�l # m� � e2l
Z

m3m
dU exp�

p
l Tr�U 1 U21�� ,

(1)

where the integration is uniformly over all m 3 m unitary
matrices. A proof can be found, for example, in [10,11].
The partition function in (1) appeared before in the context
of quantum gravity and has a third order phase transition at
m 
 2

p
l with finite size scaling governed by the Painlevé

II equation [12,13]. Baik et al. [11] prove that l 
 2
p

l 1

l1�6x2 for large l, where x2 is a random variable dis-
tributed according to the GUE Tracy-Widom distribution,
i.e., the distribution of the largest eigenvalue of a com-
plex Hermitian random matrix [14]. One has Prob�x2 #

x� � F2�x� � e2g�x�, where g00�x� � u�x�2, g�x� ! 0 as
x ! `, and u�x� is the global positive solution of the
Painlevé II equation u00 � 2u3 1 xu. Its asymptotics are
u�x� �

p
2x�2 for x ! 2` and u�x� � Ai�x� for x !

`, Ai�x� the Airy function.
To translate to the PNG model we introduce the growth

velocity y�u�, depending on the macroscopic slope u �
≠h�≠x, and the static roughness A�u� [15], which for PNG
are y�u� �

p
2 1 u2, A�u� �

p
2 1 u2 in our units. Then

h���2y0�u�t, t��� 
 �y�u� 2 uy0�u��t
1 � 1

2y00�u�A�u�2t�1�3x2 (2)

in the limit of large t. We emphasize that all nonuniver-
sal factors are given through the model dependent quan-
tities y�u�, A�u� and remark that (2) is also confirmed
by the rigorous result of Johansson [16] for a discrete
growth model equivalent to the totally asymmetric simple
exclusion process.

For the flat substrate one might expect to have the same
fluctuation law as for the droplet, since in both cases the
mean curvature vanishes on a microscopic scale. A result
of Baik and Rains [17] tells us, however, that the fluc-
tuations are GOE [14]. More precisely, there is a similar
formula for Prob�l # m� as (1) in the case that the random
permutation p is reflection symmetric relative to the anti-
diagonal, p���N 1 1 2 p�k���� � N 1 1 2 k. The asymp-
totic analysis of [17] results in l 
 4

p
l 1 �2l�1�6x1,

where x1 is distributed as the largest eigenvalue of a real
symmetric random matrix. Translated to the surface this
means

H�t� �
p

2 t 1 �t�
p

2 �1�3x1 . (3)

One has Prob�22�3x1 # x� � F1�222�3x� � e2� f�x�1g�x���2,
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g�x� as above and f 0�x� � 2u�x�, f�x� ! 0 for x ! `.
The distributions of x2 and x1 are plotted in Fig. 2. Super-
imposed are Monte Carlo data for the PNG model, which
differ distinguishably from the analytical curves only at the
tails where statistics becomes bad. We conclude that the
droplet and the flat substrate have the same scaling form
but distinct universal distributions.

The flat substrate, although used in many simulations,
and the droplet are rather special as initial conditions.
From a statistical mechanics point of view stationary
growth would be regarded as singled out, which for PNG
corresponds to initial conditions where the up and down
steps are random with densities

p
2 each. Physically,

another natural initial condition is to have a staircase
configuration representing a tilted surface. In addition we
could have sources, for example, additional nucleation
events at the origin. The mapping to the directed polymer
works as before. Our crucial observation is that such
other initial conditions translate in essence to defect lines
and/or boundary potentials for the directed polymer.

To illustrate, we discuss only one special geometry. As
for the droplet we consider random nucleations of density
one in the square R�0,t�. In addition there are random
nucleations at the two lower edges �s � 0� and �r � 0�
with constant line densities r1 and r2, respectively. Thus
the path of minimal energy, with starting point at �0, 0�,
sticks for a while at one of the two edges and then enters
the bulk to reach �0, t� eventually. If r1 , 1, r2 , 1,
it does not pay to stay at the edges, and from the bulk
we have GUE energy fluctuations according to (2). On
the other hand if r � max�r1, r2� . 1, the optimal path
stays for a length t�1 2 1�r2��

p
2 at the edge with the

higher density. Since the edge events are random, the t1�3

bulk fluctuations are dominated by the Gaussian
p

t edge
fluctuations. Parenthetically we remark that for regularly
spaced edge points one should recover GOE.

The length distribution along the critical lines r1 � 1,
r2 , 1, and r1 , 1, r2 � 1, was identified by Baik and
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FIG. 2. From left to right: the probability densities of the uni-
versal distributions x2, x1, and x0 for curved, flat, and stationary
self-similar growth, respectively.
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Rains [18], in a generalization of the techniques in [17].
They obtain GOE2 fluctuations, i.e., the distribution of
the maximum of two independent GOE random variables.
The path of minimal energy stays for a length of order
t1�3 at the density one edge. At the critical point r1 �
r2 � 1, the polymer has a choice between the left and
right edge. By a limiting procedure one obtains [18] the
universal distribution for the energy fluctuations, F0�x� �
Prob�x0 , x�, with

F0�x� � �1 2 �x 1 2f 00 1 2g00�g0�e2�g12f�. (4)

An interpretation in terms of the eigenvalue distribution of
random matrices has yet to be found. In Fig. 2 we plot
the distribution of x0. Superimposed are simulation data
for the PNG model, taken before the analytic result had
been obtained. The first four moments of xj , j � 0, 1, 2,
are listed in Table I. Of interest are also the asymp-
totics of the probability densities F0

j�x�. From Painlevé
II we obtain 2 logF0

j�x� � cjjxj3�12 for x ! 2` and
2 logF0

j�x� � djx3�2�3 for x ! ` up to logarithmic cor-
rections with prefactors cj � 1, 2, 1 and dj � 2, 4, 4 for
j � 0, 1, 2, respectively.

We have to translate back to surface growth. For sta-
tionary growth with zero slope, in the space-time picture,
the height lines cross the forward light cone with the densi-
ties r1 � 1 � r2 and the intersection points are Poisson
distributed [20]. Thus for the directed polymer with edge
densities the critical point is precisely stationary growth
with zero slope. If r1r2 � 1, r1 fi 1, we have also sta-
tionary growth but now with slope u � �r2r1��

p
2. As

argued already the fluctuations along the line x � 0 are
then Gaussian

p
t. For the t1�3 fluctuations one has to

record height differences along the line �x � y0�u�t�, as
can be seen from a similarity transformation. In Fig. 3
we illustrate the macroscopic shape for general boundary
sources. If r1 � 0 � r2, we have the droplet discussed
before. Nonzero boundary sources enforce flat segments
tangential to the droplet shape. The profile at x � 0 is
curved for r1 , 1, r2 , 1, flat otherwise, the marginal
case corresponding to the critical lines.

Our detailed study of the PNG model suggests the fol-
lowing scaling theory for all growth models in the KPZ
universality class. First of all we require a self-similar
macroscopic shape. Locally this leaves only two possi-
bilities, either a flat piece or a curved piece with a shape
determined through the slope dependent growth velocity

TABLE I. Mean, variance, skewness, and kurtosis for the dis-
tributions of x2, x1, and x0 as determined by numerically solv-
ing Painlevé II [19]. �xn	c denotes the nth cumulant.

Curved �x2� Flat �x1� Stationary �x0�

�x	 21.771 09 20.760 07 0
�x2	c 0.813 20 0.638 05 1.150 39
�x3	c��x2	3�2

c 0.2241 0.2935 0.359 41
�x4	c��x2	2

c 0.093 45 0.1652 0.289 16
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FIG. 3. Droplet with boundary sources of intensity r2 , 1
and r1 � 1 (critical). The dashed line corresponds to the free
droplet. The shaded region is the extra mass due to sources.

[21]. We draw a ray from the center of symmetry. If
the surface at the point of intersection with the ray has
nonzero curvature, then the height fluctuations in this di-
rection are GUE with scaling form (2). If the curvature is
zero, we have to know the roughness of the initial condi-
tions, i.e., jh�x, 0� 2 h�0, 0�j ~ jxja with roughness expo-
nent a, and/or the corresponding roughness for boundary
sources. If a � 0 the height fluctuations are GOE and the
general scaling form is as in (2) with x2 replaced by x1.
If a � 1�2 the height fluctuations are Gaussian with vari-
ance proportional to t, except along the line �x � y0�u�t�,
where they again have the scaling form (2) with the ran-
dom variable x2 replaced by x0, as defined in (4). The
intermediate cases 0 , a ,

1
2 have not been studied sys-

tematically. Also the fluctuations at the end points of flat
pieces have still to be classified. There are two excep-
tions. One is the case of Fig. 3, which has GOE2 and the
second one is the half-droplet with an external source at
x � 0. Translating [17] to PNG one finds GOE, GSE, and
Gaussian depending on the strength of the source.

Our constructions carry over immediately to higher di-
mensions, as can be seen most directly in the polymer pic-
ture. The square is replaced by a �d 1 1�-dimensional
(hyper)cube with uniformly distributed nucleation cen-
ters, the polymer running from the lower to the upper tip.
For the PNG model this corresponds to droplet growth
with islands having the shape of a regular simplex (a
triangle in 2 1 1, a tetrahedron in 3 1 1, and so on). One
axis of the cube defines the order 1, . . . , N , while the re-
maining d axes define the permutations pi�1�, . . . , pi�N�,
i � 1, . . . , d. Increasing means now increasing in all coor-
dinates, i.e., j , j0 and pi� j� , pi� j0� for all 1 # i # d.
The length of the longest increasing subsequence equals,
again, the height of the droplet. At present we study nu-
merically the statistics of this length with the goal to have
information on scaling more precise than the one of previ-
ous investigations [22].
In conclusion, we have obtained distinct scaling func-
tions for the PNG model, which depend on the choice of
initial conditions. By universality we argued that from the
knowledge of the self-similar curvature one can infer the
type of height fluctuations. It would be of interest to study
also joint probability distributions of the height at distinct
space-time points. Perhaps such a program could identify
the universal field theory hiding behind KPZ growth in
one dimension.
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