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Instantaneous Normal Mode Analysis of Liquid HF
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We present an instantaneous normal mode analysis of liquid HF aimed at clarifying the origin of
peculiar dynamical properties which are supposed to stem from the arrangement of molecules in a linear
hydrogen-bonded network. The present study shows that this approach is a unique tool for the under-
standing of the spectral features revealed in the analysis of both single molecule and collective quantities.
For the system under investigation, we demonstrate the relevance of hydrogen-bonding “stretching” and
fast librational motion in the interpretation of these features.

PACS numbers: 62.60.+v, 63.20.Pw
In recent years, the analysis of instantaneous normal
modes (INM) of normal and supercooled liquids has given
a sound improvement to the understanding of the micro-
scopic processes underlying the dynamical properties of
these systems. Applications of the method are to be found
in the calculation of macroscopic quantities through the
knowledge of the density of states (e.g., the diffusion co-
efficient [1]) and in the interpretation of atomic motion
through the inspection of the eigenvectors [2–4]. This last
method appears to be a unique tool for the interpretation
of dynamical features (single molecule or collective) of
a disordered system in terms of correlated motions of its
constituents. In particular, it is interesting to explore how
the presence of locally ordered units is reflected in the time
behavior of, for example, the velocity autocorrelation func-
tion (VACF). Attempts in this direction have to be found
in the analyses of the following: (i) the correlation func-
tion of the projection of the center of mass (CoM) velocity
of water molecules along the directions of the normal co-
ordinates of a cluster of three molecules [5]; and (ii) the
projection of INM eigenvectors onto the totally symmet-
ric displacement coordinates of ZnCl22

4 tetrahedral units
[2]. Moreover, the INM approach has been exploited to
describe the dynamical features of molecular liquids (e.g.,
diatomic Lennard-Jones [6], CS2 [7]) including hydrogen
bonded systems such as water [3,8]. On the other hand, re-
cent molecular dynamics simulations of HF have revealed
peculiar dynamical features, e.g., a peak at � 50 ps21 in
the spectra of both collective and single molecule corre-
lation functions [9,10]. In the collective longitudinal and
transverse current spectra this mode appears to have an
optical-like character, since its frequency is found to be
independent of the wave vector. For the interpretation
of the CoM VACF spectrum, this peak has been related
to the relative motion of two nearest neighbor molecules
[10]. Since nearest neighbors are also hydrogen-bonded it
is tempting to assign this dynamical feature to hydrogen-
bonding “stretching.” As a matter of fact, HF molecules
have been demonstrated to form irregular zigzag chains of
different size, being this peculiar clustering favored by the
geometry of the molecule and the strong electrostatic inter-
0031-9007�00�84(21)�4878(4)$15.00
action [11]. A dynamical characterization of these ordered
units has not yet been given, so that any assignment of the
spectral features to a particular dynamical process remains
speculative.

In the present Letter we report the results of an INM
analysis of liquid HF aimed to give an answer to the above
problems. It will be shown to which extent the presence of
irregular chains is reflected in the INM spectra and how the
appearance of optical-like modes can be understood from
the analysis of the short time dynamics naturally expressed
by the INM eigenvectors.

The use of the INM analysis starts from the solution of
the eigenvalue problem,

v2Te � Ke , (1)

where T is the mass matrix of the system and K is the ma-
trix of the second derivatives of the potential energy. Here
e represents a multidimensional vector which specifies the
instantaneous configuration of the system, i.e., in general,
the three CoM coordinates and Euler angles of the assumed
rigid molecule. An average over many independent con-
figurations has to be performed in order to obtain the dis-
tribution of eigenfrequencies and any dynamical quantity
derived from the knowledge of the eigenvector e. In or-
der to avoid spurious effects originating in the fact that
the mass matrix T, which depends on the sine of the po-
lar angle, is not guaranteed to be strictly positive definite
at each time, we have used the orientational coordinates
described in Ref. [12] to evaluate the derivatives of the
potential energy.

We have calculated the INM for liquid HF (at T �
203 K and r � 1.178 g�cm3), using 60 configurations
separated by 2 ps with N � 108 molecules. The poten-
tial model, reported in Ref. [13], accounts for the inter-
action of three fractional charges plus a Lennard-Jones
contribution, and it has been shown to satisfactorily re-
produce the thermodynamics and structure of the liquid.
Because of the complexity of the interaction potential we
have evaluated the matrix of the second derivatives nu-
merically by displacing each generalized coordinate with
© 2000 The American Physical Society
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an increment h � 1025 Å since it gives a good stability
of the matrix elements and no unusually high eigenvalues.
We also checked the accuracy of the results by the pres-
ence of three eigenmodes with zero frequency. Our value
of the increment is in accordance with the one used, for
example, in Ref. [14]. The generalized eigenvalue prob-
lem was resolved using standard methods [15].

The INM spectrum is presented in Fig. 1. A comparison
with the results for water at room temperature (reported in
Ref. [8]) points out some important features. The con-
tribution of imaginary modes (conventionally reported on
the negative axis) is substantially larger in HF than in H2O
(16% against 6%), a result consistent with the relatively
higher diffusion coefficient found in HF [10]. Moreover,
there is a much more definite separation between transla-
tional and rotational contributions defined by

rT �v� �

*X
i

X
m�1,2,3

�ea
im�2d�v 2 va�

+
, (2)

rR�v� �

*X
i

X
m�4,5

�ea
im�2d�v 2 va�

+
, (3)

where ea
im is the component of the eigenvector correspond-

ing to the frequency a, referred to the ith molecule and to
coordinate component m (m � 1, 2, 3 CoM, m � 4, 5 ro-
tational coordinates).

The rotational spectrum extends from 50 to 250 ps21,
whereas in water it goes from 0 to 180 ps21. The transla-
tional spectrum of HF shows a clear second maximum at
� 50 ps21 absent in the spectrum of water where one can
notice only an asymmetry of the low frequency maximum
with a larger content at higher frequency. We believe (and
demonstrate later) that this secondary maximum is related
to the stretching of the hydrogen bond between two HF
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FIG. 1. Spectrum of the INM, with imaginary frequencies re-
ported in the negative part, as usual. The thick line is the total
spectrum, and has been divided into translational and rotational
components, the latter of which appears only at high frequency.
The dotted and dashed lines correspond to the contribution par-
allel and perpendicular to the molecular axis, respectively.
molecules. A comparison with the spectrum of the CoM
VACF [10] points out that the peak at � 50 ps21 is much
less pronounced and separated in the translational compo-
nent of the INM.

The strong anisotropy of the single molecule dynamics
is shown by performing a projection of the translational
component of the eigenvector along the directions parallel
and perpendicular to the molecular axis:

rk�v� �

*X
i

X
m�1,2,3

�ea
imuim�2d�v 2 va�

+
, (4)

where ui is a unit vector along the symmetry axis of
molecule i, and we have also defined r��v� � rT �v� 2

rk�v�. If the molecular motion were isotropic, the ratio
between the perpendicular and parallel contributions would
be equal to 2. Figure 2 shows that below 20 ps21 this ratio
becomes larger than 2 going over 4 for modes at negative
frequencies: a result which points out that molecules can
diffuse more freely in the direction perpendicular to their
axis rather than in the parallel one. Beyond 50 ps21 the
ratio becomes equal or less than 1, thus revealing that the
motion of the molecules in this frequency range occurs, on
a large extent, in the direction of the molecular axis. Such
an observation will be relevant in discussing the arrange-
ment of molecules along irregular chains as revealed by the
subsequent analysis of the INM eigenvectors. As a final
remark, we wish to point out that the clear separation be-
tween translational and rotational components can be con-
sidered as a print of hydrogen bonded systems. In fact it is
present in water and HF but not in a linear Lennard-Jones
diatomic which has been investigated in [6].

To analyze in more detail the structure of the INM, we
need to determine which molecules participate in each
given mode. We assume the following criterion: the
molecule i said to belong to mode a if the conditionP

m�ea
im�2 .

1
N is fulfilled. The distribution of the number

of molecules per mode is reported in Fig. 3 (solid line) as a
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FIG. 2. The ratio between r��v� and rk�v� [see Eq. (4)]. It
should be 2 for an isotropic system.
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FIG. 3. Solid line (left scale): Frequency distribution of the
particles participating in the modes. Dashed line (right scale):
The distribution of the mode radii, normalized with the simula-
tion box length (14.504 Å).

function of frequency. Knowing the particles participating
in a given mode, we can determine the spatial localization
of the mode.

If ri is the CoM position of particle i and Sa is the set
of particles involved in the mode, we can define a “radius”
for the mode as the maximum distance between two par-
ticles, i.e., Ra � maxi,j[Sa

jri 2 rjj, the distribution of
which is reported in Fig. 3 (dashed line). A comparison of
the behavior of the two quantities indicates a clear corre-
spondence between participation ratio and extension of the
modes. A lower number of participating molecules is ac-
companied by a smaller radius of the mode. Surprisingly
enough, however, in the range of � 50 ps21 the modes
have an extension of about half of the box length even if
the number of molecules participating is smaller than ten.

A better understanding of this localization problem can
be obtained by performing a projection of a mode onto the
hydrogen bonded chains present in the system, where hy-
drogen bonding is defined by the same energetic criterion
adopted in Ref. [13]. If Cc denotes the set of molecules
belonging to the chain c, we define the projection of the
mode a on the chain as

Pa
Cc

�
X

i[Cc ,m

�ea
im�2, (5)

which is one if the mode a is localized on the chain c, and
is zero if the mode a involves molecules not belonging
to the chain. Clearly, if we consider the maximum of this
projection taken on the set of all the chains, we can see
whether the modes are localized on some chain or not.

The result presented in Fig. 4 (dashed line) indicates
that, only in some frequency range, the modes show a high
degree of localization on a single chain, in particular, in the
same range where a minimum participation ratio occurs
and the radius of the mode is lower (see Fig. 3).

The idea that modes at particular frequencies are
strongly correlated to the presence of chains is confirmed
4880
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FIG. 4. Solid line (left scale): Frequency distribution for the
number of chains involved in the modes. Dashed line (right
scale): Frequency dependence of the mean value of the maxi-
mum projection of the eigenmodes onto a chain.

by looking at the distribution of the number of chains
involved in a mode as reported in Fig. 4 (solid line). In the
range � 50 ps21 (and in the region of imaginary frequen-
cies) we find that the modes are spread over two distinct
chains; at the highest frequencies only one chain per
mode is involved. Since in this range only four molecules
are participating to the mode (see Fig. 3), we can con-
clude that these modes are confined on the ring chains
(tetramers) which are found to be particularly stable [13].

Having said that, it is also evident that most of the modes
are far from being localized over a single chain, e.g., all the
modes whose maximum projection is less than 0.80. This
result is in accordance with other INM studies of network
forming systems [2], where it is shown that the modes do
not typically reproduce the behavior that could be expected
on the basis of the group properties of the network, but
generally have some sort of mixed character.

In order to characterize the spatial correlation of the
molecular displacements through the INM eigenvectors,
we have examined the following quantity:

c�R, v� �

*
1

3N

X
a

1
n�R�

X
jri2rj j[R

3
X
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jmd�v 2 va�

+
, (6)

where R denotes a spatial range (e.g., first or second
shell of nearest neighbors, defined through the minima
of the CoM pair correlation), and n�R� is the number
of pairs present in that range for a given configuration.
This quantity is a sort of mean value of the scalar prod-
uct of the displacement of the particles being nearest or
next-to-nearest neighbors in a given normal mode and at
least at short time characterizes in an exact way the mo-
tion of the molecules participating to the particular mode.
It is, of course, positive if the particles move in phase and
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negative for out-of-phase displacements. The results are
shown in Fig. 5.

We notice that the nearest neighbors have opposite
phases in a broad frequency range around 50 ps21, a
behavior in accordance with the presence of the stretching
mode similar to the one observed in the solid [16] and
consistent with the fact that, in this range of frequency, the
molecules move preferentially along the direction of the
molecular axis. We notice that the next-to-nearest neigh-
bors are not very much correlated in this range, a signature
of the fact that those modes are somehow localized over
a chain (see Fig. 4) and do not involve many molecules,
in agreement with the value of the participation ratio (see
Fig. 3). The present result unambiguously confirms the
optical-like character of the mode at 50 ps21 present in
the longitudinal and transverse current spectra reported in
Ref. [9].

In a previous investigation of the collective properties of
liquid HF [9], it has been shown that the longitudinal spec-
tra have a peak, vmax, at low frequency, which changes
linearly with the wave vector k. Its value is found to remain
lower than 10 ps21. The corresponding phase velocity
yph � vmax�k turns out to be somewhat higher than the
ultrasonic (hydrodynamic) counterpart, but compatible
with the presence of a positive anomalous dispersion as
in the case of monatomic liquids (e.g., liquid metals).
This feature is normally interpreted in terms of over-
damped acoustic modes propagating in the system at
wave vectors well beyond the hydrodynamic range. The
results of the present INM analysis are consistent with
such an interpretation, since they show that in the range
below 10 ps21 (i) the participation ratio is large (see
Fig. 3) and (ii) the short time displacements of nearest and
next-to-nearest neighbors are in phase as one would expect
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FIG. 5. The value of the spatial correlation between particles
in various normal mode [see Eq. (6)]. The solid line shows
correlation between the molecules being in the first shell, and the
dashed line shows correlation between molecules in the second
shell (multiplied by a factor of 5). The zero-frequency modes
(corresponding to an overall translation of the system) have been
dropped from the calculation.
from molecules participating to a collective (acousticlike)
motion (see Fig. 5).

In conclusion, the INM analysis of HF has revealed
how the dynamical features are affected by the presence
of topological chains of hydrogen-bonded molecules. In
certain ranges of frequencies there is a strict correspon-
dence between INM modes and chains, where these modes
are found to be localized. This result has allowed us to
give a sound interpretation to a feature present both in the
VACF and collective currents, namely, a peak at 50 ps21

in the corresponding spectra. Such a characteristic can
in fact be assigned to the stretching of hydrogen bonding
of first neighboring molecules. This finding reveals the
“optical” character of the collective mode present in the
currents. Low frequency modes are found to be spread over
the whole system involving several different chains, how-
ever they are confined to frequencies not much higher than
10 ps21 in agreement with previous findings derived from
the analysis of the longitudinal and transverse currents.
The very high frequency (rotational) modes (� 200 ps21)
are demonstrated to be confined over the highly stable
tetramer chains.

Finally, we wish to stress the fact that our present study
has the potential to pave the way for an unambiguous in-
terpretation of the dynamical feature of other hydrogen-
bonded systems (e.g., water) which are still a matter of a
large debate.
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