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Counterion Release and Electrostatic Adsorption
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The effective charge of a rigid polyelectrolyte (PE) approaching an oppositely charged surface is
studied. The cases of a weak (annealed) and strongly charged PE with condensed counterions (such as
DNA) are discussed. In the most interesting case of the adsorption onto a substrate of low dielectric
constant (such as a lipid membrane or a mica sheet) the condensed counterions are not always released
as the PE approaches the substrate, because of the major importance of the image-charge effect. For the
adsorption onto a surface with freely moving charges, the image-charge effect becomes less important
and full release is often expected.

PACS numbers: 61.25.Hq, 68.10.Cr, 87.14.Gg
A deep understanding of the adsorption of DNA or
other charged biomolecules onto oppositely charged
membranes is of fundamental importance to understand
many key physiological processes, and many experimental
studies have approached this problem from very different
viewpoints [1], strongly motivated by applications to
gene therapy [2]. On the theoretical side, the electrostatic
adsorption of rigid polyelectrolytes (PE) has been studied
within the Debye-Huckel approximation in different
situations [3]. Here, we focus on the effective charge of
the adsorbed macromolecule. We calculate the attraction
energy between an infinitely long, charged cylinder (rigid
PE) parallel to an oppositely charged plane, as a function
of their distance h. The energy variation leads to the
determination of the equilibrium charge density of the rod
as a function of h. This (effective) charge density can
be interpreted in terms of the release of condensed coun-
terions for highly charged PE such as DNA, which are
beyond the Manning condensation threshold, or in terms
of the recombination of ionized charges on the rod for
weak (annealed) PE. In contrast to what would be naively
expected, the full release of the counterions condensed
onto a highly charged rod is not always observed in the
vicinity of an oppositely charged surface.

The adsorption energy is derived by perturbating the
Gouy-Chapmann solution of the Poisson-Boltzmann equa-
tion in a planar geometry. The perturbative treatment is,
strictly speaking, valid only for low linear charge densi-
ties t of the rod lBt ø 1, where lB is the Bjerrum length
lB � e2��4pe� (all energies are in kBT units). However,
the physical picture which emerges from this calculation
leads to qualitative statements concerning highly charged
PE as well. We discuss the adsorption free energy on a
substrate of low dielectric constant with respect to wa-
ter (ew � 80), which is of most practical importance in
biology related problems (adsorption of DNA on a lipid
membrane for which elp � 2 [4]) and other situations (ad-
sorption onto the mica surfaces of an SFA: emc � 6 [5]).
We have checked that the case of a membrane of thickness
l � 50 Å and dielectric constant elp � 2 does not show
quantitative differences with the present situation (l � `
0031-9007�00�84(21)�4862(4)$15.00
and elp � 0). Finally, we also study the case where the
charges on the plane are free to adjust to the field created
by the rod, a situation of great interest for fluid interfaces
such as biological lipid membranes.

The electrostatic potential f�0� near a charged wall of
density s . 0 [or equivalently with a Gouy-Chapmann
length l � 1��2plBs�], in a salt solution of average con-
centration n0 (or Debye length k21 with k2 � 8plBn0)
satisfies the Poisson-Boltzmann (PB) equation [6]. In the
low salt limit kl ø 1, which is the case discussed in this
paper, the potential near the wall (kz ø 1) follows the
Gouy-Chapmann (GC) law [7]

f�0� � 22 log
k�l 1 z�

2
, n�0��z� �

1
2plB�l 1 z�2 ,

(1)

where z is the coordinate normal to the wall (z � 0 at the
interface), and n�0� is the density of (negative) counter-
ions (or c-i) near the wall. The Gouy-Chapmann solu-
tion predicts a dense counterion layer (the GC layer) of
thickness l containing half the c-i, followed by a diffuse
ci region. The local screening length in the GC layer is
small, Lk � l�

p
2, while it is self-similar in the diffuse

region, Lk � z�
p

2. The electrostatic potential decreases
exponentially for kz . 1.

The potential variation df due to a negatively charged
rod (of linear charge density 2t) located at an altitude
z � h above the plane is calculated by a linear expansion
of the GC theory, provided that the perturbation is small.
A small perturbation of Eq. (1), dn ø n�0�, supposes that
the perturbation potential df is smaller than unity. The
calculation of the potential is carried out in Fourier space
for the coordinate x parallel to the wall and perpendicular
to the rod: f̃q �

R
dx eiqxf�x�. The linearized PB equa-

tion and the boundary conditions are

≠2
zdf̃ �

µ
q2 1

2
�z 1 l�2

∂
df̃, ≠zdf̃jz�0 � 0 ,

and ≠zdf̃jz�h1
2 ≠zdf̃jz�h2

� 4plBt (2)

with natural boundary conditions for z ! `.
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From the perturbed potential df�x, z�, the free energy
due to the presence of the rod can be calculated by a charg-
ing process of the rod: dF �

Rt
0�f�0�

z�h 1 dfz�h�dt.
The first part of the integral gives the interaction energy
between the rod and the charged plane and the unperturbed
GC counterion layer, while the second part represents the
self-energy of the rod and its interaction with the perturbed
c-i cloud. The direct interaction energy is

dFint � 2t log
k�l 1 h�

2
. (3)

The solution of the perturbed PB equation, Eq. (2), leads
to the “self-energy”: dFself � 1�2lBt2Ip , with

Ip �
Z pM

0
dp

�1 1 p�1 1 h̄��2

p3�1 1 h̄�2

3

µ
e22ph̄ 1 2 p 1 p2

1 1 p 1 p2 2
1 2 p�1 1 h̄�
1 1 p�1 1 h̄�

∂
(4)

with p � ql and h̄ � h�l. The integral cutoff is pM �
2pl�a where a is a “microscopic” size of order the rod
radius (a � 20 Å for DNA [8]). This complicated expres-
sion can be approximated in the two important limits: for
h ¿ l

dFself �
1
2

lBt2

∑
2
3

1 log

µ
4p

3
h
a

∂∏
(5)

and for h ø l

dFself �
1
2

lBt2

µ
2G 1

2p

3
p

3
1 log

pl2

ah

∂
. (6)

The self-energy behaves very differently far from and close
to the wall. It shows an attraction between the rod and the
plane at large distances, which superimposes to the bare
attraction between the two oppositely charged macroions.
At short distances, there is a strong (logarithmically diver-
gent) repulsion between the rod and the plane [Eq. (6)].

The self-energy shows a deep minimum for a position
of the rod: hmin � 0.8l. It results from a balance be-
tween the repulsive image-charge effect and the attraction
due to the screening of the ci in the GC layer. The self-
energy of a cylinder in a bath of mobile charges is of order
lBt2 logLk�a, where Lk is the characteristic (“screening”)
length of the bath—the range of the electrostatic inter-
actions. Note that although the free ions are mostly of
the same sign as the rod, one can speak of a screening
effect, as the interaction between the rod and the unper-
turbed ion cloud is taken into account in dFint [Eq. (3)].
The self-interaction includes also the interaction with the
image charge, which, for ez,0 ø ez.0, is a virtual rod of
the same charge located at z � 2h [9]. This gives an extra
contribution �lBt2 logLk�h per unit length. The large and
short distance behaviors Eqs. (5) and (6) can now be ex-
plained from the counterion profile Eq. (1), since Lk � h
for h . l and Lk � l for h , l.

The adsorption of a polyelectrolyte onto a biomembrane
or other fluid membranes, which are generally a mixture
of charged and neutral lipid molecules, involves the move-
ment of surface charges as a response to the field created
by the rod. We address this case, disregarding the fact that
the lipid bilayer is a flexible object which would, to a cer-
tain extent, wrap around the PE [10]. We also assume that
the charge reorganization at the interface is not limited by
the availability of moving charges on the plane. The charge
on the plane follows a Boltzmann law, s � s0e2df. As
a result, the boundary condition for the perturbed field on
the plane [corresponding to Eq. (2)] has to be modified:
≠zdf̃jz�0 � 4plBs0df̃jz�0. This affects the self-energy
term only, which can be expressed similarly to Eq. (4):
dFself � 1�2lBt2I bis

p with

I bis
p �

Z pM

0
dp

�1 1 p�1 1 h̄��2

p3�1 1 h̄�2

3

µ
e22ph̄ 3 2 3p 1 p2

3 1 3p 1 p2 2
1 2 p�1 1 h̄�
1 1 p�1 1 h̄�

∂
.

(7)

For h̄ . 1 this self-energy is equivalent to the constant
surface charge case [Eq. (5)], while for h̄ , 1

dFself �
1
2

lBt2

µ
2G 2

p

3
p

3
1 log

pl2

6ah

∂
. (8)

The mobile (positive) charges of the surface are at-
tracted toward the rod (x � 0); this effectively decreases
the “Gouy-Chapman” screening length around the PE and
reduces the image-charge effect. The case of an annealed
surface charge is qualitatively similar to, but quantitatively
different from, the case of a quenched surface charge.
Since the repulsion of the wall is weakened, the minimum
of the self-energy is much deeper, and closer to the wall in
the case of moving surface charges.

We now discuss the variation of the line charge of an
annealed, or weak, polyelectrolyte near a charged wall.
The charges on the chain result from a partial ioniza-
tion of specific chemical groups. The ionization occurs
at chemical equilibrium with the free ions in solution,
and is governed by quantities such as the pH of the so-
lution [11]. Formally, the PE charge density can be deter-
mined by equating the chemical potential of the charges
on the chain to a (given) chemical potential m0 for the
free charges. For an infinitely long rigid PE in a salt
solution, the free energy (per unit length) of the charges
on the chain is the sum of the translational entropy of
the charges along the rod, the electrostatic energy, and
the chemical potential: F � t logta�e 1 lBt2 logka 2

m0t. The equilibrium charge density of the rod for a given
chemical potential is obtained by differentiation of the free
energy: m0 � logta 1 2lBt logka. The equivalent ex-
pression for a charged rod near an oppositely charged plane
can be computed from the electrostatic free energy Eqs. (3)
and (4): m0 � logta 1 lBtIp 1 2 logk�l 1 h��2. Be-
cause of the minimum in the electrostatic energy, the equi-
librium charge density t is maximum for a finite height of
order the GC length, and decreases sharply near the wall.
4863



VOLUME 84, NUMBER 21 P H Y S I C A L R E V I E W L E T T E R S 22 MAY 2000
This nontrivial behavior of the charge density near the wall
is mostly due to the importance of the image charge effect
in the vicinity of the wall. It is extended further below to
the case of highly charged PE with Manning condensation.
Note that the optimum charge of the weak PE can reach
higher values if the charges on the surfaces are mobile, but
still decreases at shorter distances.

The perturbative treatment is expected to fail in the im-
portant case of the release of the counterions condensed
onto a highly charged rod, as the rod approaches an op-
positely charged plane. However, the qualitative argument
which translates the concentration of free charges into a
local screening length should still hold in this case.

A charged cylinder surrounded by its counterions under-
goes the so-called Manning condensation [12]. Solutions
of the Poisson-Boltzmann equation in this geometry [13]
predict that if the rod is highly charged (namely, lBt . 1),
a finite fraction 1 2 b of the counterions are confined
in the close vicinity of the rod. The electrostatic prop-
erties far from the rod are the same as those of a rod
with an effective charge lBt� � 1. The (over)simplified
Oosawa picture of counterion condensation [14] gives a
qualitative account of this phenomenon [15]. It is based
on a chemical equilibrium between two types of counter-
ions: condensed c-i with a reduced entropy and subjected
to a large electrostatic attraction from the rod on the one
hand, and free c-i in solution far from the rod on the other
hand. This picture can be adapted to the case of a cylin-
der of charge t in a salt solution of screening length k21.
The effective charge of the cylinder, t� � bt, is obtained
by balancing the chemical potentials of the condensed c-i
mcond � log� �12b�ty

pa2 � 1 2lBtb log�ka� and of the c-i dis-
persed among the salt molecules mfree � log�n0y� (y is
the volume of a c-i molecule). The resulting fraction of
free c-i b is log�8lBt�1 2 b�� � �1 2 lBtb� log��ka�2�.
This result is very similar to the Oosawa relationship for a
rod which would occupy a (small) volume fraction fy �
�ka�2 in a salt-free solution [16], namely, b � 1 for lBt ,

1 and blBt � 1 for lBt . 1.
The counterion condensation on a rod near a charged

plane can be derived in the same way. The chemical poten-
tial of the condensed counterions depends upon the elec-
trostatic potential on the rod, which can be determined (at
the level of the scaling laws) using the calculation of the
previous sections. Equating the chemical potentials of the
free and condensed ci, we obtain the fraction of free ci b,

log�8lBt�1 2 b�� � log��ka�2� 2 2lBtb log

∑
ah

Lk�h�2

∏

1 2 log

∑
k�h 1 l�

2

∏
, (9)

where the local screening length follows the asymp-
totic behaviors, Lk � l for 0 , h , l and Lk � h
for l , h , k21. Examples of the counterion release
as a function of the distance to the wall is shown in
Fig. 1 (for which proper screening due to the salt has
4864
been taken into account for kh . 1). The Manning
parameter lBt � 4 and the radius a � 20 Å are of
order those for DNA, three surface charge densities
ranging from l � 200 to 50 Å have been consid-
ered, corresponding to one charge every �100 Å�2

to �50 Å�2. The salt concentration k21 � 1000 Å cor-
responds to a concentration of 1025 mol�liter. While
the c-i are released as the rod penetrates the Gouy-
Chapmann layer, full release (b � 1) is reached only for
l � 50 Å—the maximum being 60% for l � 200 Å
(it is of the order of 30% for the free rod). Furthermore,
the free charges recondense at short distance if l is large
enough; the effective charge reaches 50% of the bare
charge for l � 200 Å. It can be shown that for large
salt concentration or weak surface charge of the wall,
k2l3 , 2a, the PE in contact with the wall can have a
lower effective charge than the free PE.

It should be noted that the short range repulsion due
to the image charge could, in principle, prevent real ad-
sorption between the rod and the plane. In many cases,
however, a short range attraction of nonelectrostatic origin
(such as a hydrophobic force) dominates near the wall, and
must be added to the free energy calculated here in order
to study the equilibrium adsorption.

Different conclusions are reached in the case of moving
surface charges. A highly charged rod has a strong
effect on the surface charge distribution, for the potential
it creates is likely to dominate over the Gouy-Chapman
potential, even near the wall. A quantitative description
of the phenomenon would require the solution of the full
nonlinear Poisson-Boltzmann equation, with complex
(nonlinear as well) boundary conditions. In the following,
we merely try to give a feeling of the way moving charges
can influence the counterion release of an adsorbed
polyelectrolyte. We assume that the surface charge
distribution obeys Boltzmann statistics, s � s0e2fh ,
where the potential fh created by the rod at the surface
reflects the screening due to the Gouy-Chapmann layer,
the image charge, and the fraction �1 2 b� of condensed
counterions: fh � 22lBtb log�Lk�h�2. Since the local
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FIG. 1. Fraction b of free counterions as a function of the
distance to the wall in l units [dashed: b�h ! `�] for a �
20 Å, lBt � 4, k21 � 1000 Å, for decreasing values of the
Gouy-Chapmann length l � 200, 100, and 50 Å.
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screening length Lk � �l 1 h��
p

2 is influenced by the
surface charge s, which in turn depends upon the screen-
ing length, we obtain a self-consistent relationship for the
local Gouy-Chapman length near the rod,

l�h�

√
h 1 l�h�
p

2 h

!4lBtb

� l0 . (10)

This expression shows that moving surface charges
strongly reduce the screening length near the rod, which
becomes of order h when the rod is close to the wall
(recall that lBtb � 1). As a consequence, the interaction
with the image charge and the self-interaction along the
rod are both strongly screened. The dominant interaction
between the cylinder and the wall is the attractive part
given by Eq. (3), and we are likely to observe a full release
of the condensed counterions in this case.

To summarize, we have studied the evolution of the
effective charge of a polyelectrolyte near an oppositely
charged plane. The case of a weak PE is studied fairly
rigorously, via a perturbative treatment of the nonlinear
Poisson-Boltzmann equation. We show that at large dis-
tance, the charge of the PE increases as the distance to
the wall h decreases, as expected. However, the charge
decreases “strongly” as the PE enters the Gouy-Chapman
layer (h � l) because of the combined effect of image
charge (for the most common case of a wall with a low di-
electric constant) and self-interaction along the PE. These
two effects are very much influenced by the value of the
Gouy-Chapman length l, and are partly suppressed in the
case of a fluid interface with moving surface charges (for
a fluid lipid bilayer, for instance), where the charge of the
adsorbed PE can reach higher values.

The most interesting case of a strongly charged PE be-
yond the Manning condensation threshold (such as DNA)
is discussed qualitatively, using “scaling” arguments in-
ferred from the perturbation theory. We predict that in the
case of fixed surface charges, and in contrary to a widely
spread idea, most of the condensed counterions are not re-
leased if the Gouy-Chapman length is larger than the radius
of the rod, l ¿ a. In the case of freely moving surface
charges, a full release of the condensed counterions is ex-
pected, as the effective Gouy-Chapman length near the rod
is of order the rod radius.

In all the discussion, we have assumed that the Gouy-
Chapman length is larger than a molecular size. In many
real cases, the two lengths are of the same order of mag-
nitude and the finite size of the ions must be taken into
account in order to obtain quantitative results. In this case
our results can at best be considered as qualitative.

To conclude, we emphasize that our theory suffers the
limitations inherent to the Poisson-Boltzmann theory, the
most serious of which is that it does not include lateral
correlations between condensed counterions. These corre-
lations are expected to be important in the case of multiva-
lent counterions, and are known to modify the mean field
picture [17]. Studies are under way to address this impor-
tant issue.

Some predictions of our work could be tested experi-
mentally. Although a direct determination of counterion
release is not an easy task, comparisons between the
theory we describe and experiments are possible for weak
polyelectrolytes, for the ionization of these polymers
can be measured by means of Fourier transform infrared
spectroscopy. Experiments using this technique are cur-
rently being performed on macromolecules near charged
surfaces [18].
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