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The statistical properties of the turbulent field consisting of drift waves randomly interacting with a
coherent structure are investigated. By using a nonperturbative method (analogous to the “semiclassical”
approach in quantum mechanics), we calculate explicitly the generating functional of the correlations.
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Many experimental and numerical studies of fluid and
plasma turbulence have revealed the presence of persis-
tent coherent structures coexisting with the random phase
fluctuations ( [1,2]). In particular, it has been shown that
the turbulent drift-wave potential in the outer region of the
tokamak plasma can generate coherent structures [3]. It
is generally admitted that perturbative methods (based on
low orders in the series of cumulants) cannot describe co-
herent structures [1]. In this paper we present an analytical
approach to the problem of determination of the statistical
properties of the mixed state of “homogeneous” drift tur-
bulence and coherent structures. The starting point is the
observation that the coherent structure and the drift waves,
although very different in form, are similar from a particu-
lar point of view: the former realizes the extremum of the
action functional that describes the nonlinear evolution of
the plasma and the latter obtain a value of the action very
close to this extremum. Our approach is based on results
from well-established theories: the functional statistical
description of classical stochastic dynamical systems ([4],
in the path integral formalism [5]; see also [6]); the per-
turbed inverse scattering transform method, allowing one
to derive the perturbed form of nonlinear coherent struc-
tures [7]; the semiclassical approximation in the study of
the quantum particle tunneling in multiple minima poten-
tials [8]. In standard field theory terminology our method
belongs to the “nonperturbative” approaches.

In previous works on the dilute gas of plasma solitons,
the field has been represented as a sum of noninteracting
solitons randomly distributed in the volume and with ran-
dom velocities. A statistical analysis has been done for
the nonlinear drift waves by Meiss and Horton [9]. Ac-
tually our work starts from the same nonlinear equation
and potentially contains the analysis of [9], but we shall
not consider this type of stochasticity and will focus on
the manifestation of the drift-wave turbulence. Our pri-
mary objective is to determine the spectrum of a plasma
vortex whose shape is randomly perturbed by interaction
with random linear drift waves.

We consider the plasma confined in a strong magnetic
field and the drift-wave electric potential in the transversal
plane �x, y�, where y corresponds to the poloidal direction
and x to the radial one in a tokamak. The nonlinear drift
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equation (studied in Ref. [9]) is
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where rs � cs�Vi , cs � �Te�mi�1�2, and the potential is
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. Here Ln and LTe are, respectively,

the gradient lengths of the density and temperature. The ve-
locity is the diamagnetic velocity yd � rscs�Ln. The exact
solution of the equation is ws� y, t; y0, u� � 23� u
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u �1�2� y 2 y0 2 ut��, where the velocity is
restricted to the intervals u . yd or u , 0. The space
“volume” on the y coordinate is �2L�2, L�2� with
L ¿ rs. We assume that u is very close to yd , u * yd

(i.e., the solitons have small amplitudes). The nonlinear
equations for the drift waves are known to admit as solu-
tions irregular turbulent fields but also exact coherent struc-
tures of the type ws� y, t; y0, u�, depending on the initial
conditions. For a statistical ensemble of initial conditions
both tendencies will be present, competing in the determi-
nation of the spectrum.

We now present an outline of the method. Instead of
using directly the equation of evolution of the system [the
original nonlinear equation for the field w, (1)] we start
by constructing the action functional of the system inter-
acting with an external current. The dynamical equation
(whose exact solution is the vortex soliton perturbed by
interaction) is the Euler-Lagrange equation derived from
the condition of extremum of this functional. By using the
exponential of the action, we construct the generating func-
tional of the irreducible correlations of w. This functional
contains all of the information on the coherent structure
and the drift turbulence. The correlations are obtained via
functional derivatives to the external current. The gener-
ating functional is by definition a functional integral over
all possible configurations of the system and this integral
must be calculated explicitly. The zeroth order of the sta-
tionary phase approximation (in function space) relies on
the perturbed vortex soliton, i.e., on the solution which
obtains the extremum of the action including the interac-
tion with the external current. The drift waves (solutions
of the linear part of the equation) do not exactly realize
the extremum of the action functional, but obtain an action
close to this extremum. This means that the drift waves are
© 2000 The American Physical Society
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near the vortex soliton in the function space in the sense
of the measure defined by the exponential of the action. It
also suggests performing the functional integral with bet-
ter approximation (instead of simply calculating the action
along the soliton solution), which means to perform the in-
tegration over a function-space neighborhood of the vortex
solution. This will automatically retain the drift waves in
the generating functional of correlations which, thus, will
contain information on both the coherent structure and the
drift waves. To define the extension in the function space
of the neighborhood around the soliton, we note that the
measure (exponential of the action) has wild oscillations
which suppress all configurations of the system which are
far from the solution realizing the extremum (i.e., the vor-
tex soliton).

To simplify the notations we rewrite Eq. (1) as bOw � 0
where w�x, y, t� represents the “field” (coherent structure
plus drift waves), and the operator bO is the nonlinear op-
erator of the equation. The statistical nature of our prob-
lem is taken into account in the construction of the action
functional. The field w obeys a purely deterministic equa-
tion, but the randomness of the initial conditions generates
a statistical ensemble of realizations of the system evolu-
tions (space-time configurations). We shall construct the
action functional in the path-integral formalism ([5,10]).
Every function from the statistical ensemble of realizations
of the system’s space-time configurations is discretized in
space and time, so it will be represented as a collection of
varables wi , each attached to the corresponding space-time
point i. In this space of functions, the selection of the
configurations which correspond to the physical ones (so-
lutions of the equation of motion) is performed via the
identification with Dirac d functions, in every space-time
point:

Q
i d�wi 2 w�xi , yi , ti��d�bOw� and integration over

all possible functions w, i.e., over the ensemble of inde-
pendent variables wi . Using the Fourier representation for
every d function, we getZ Y

i

dwi

Z Y
i

dxi exp�ixi
bOw�xi , yi , ti�� .

Going to the continuum limit, a new function appears,
x�x, y, t�, similar to the Fourier variable conjugate of w.
The generating functional of the correlation functions is

Z �
Z

D�w�D�x� exp

Ω
i

Z
dx0dt0 x�x0, t0� bOw�x0, t0�

æ
,

where functional measures have been introduced and x �
�x, y�. The random initial conditions w0� y� can be in-
cluded by a Dirac d functional: d�w�t0, y� 2 w0� y��. This
approach requires one to solve exact evolution equations
starting from every realization in a statistical ensemble of
initial conditions, followed by averaging. Instead of this
exact treatment (accessible only numerically) we exploit
the particularity of our approach, i.e., the connection be-
tween the functional integration and the delimitation of the
statistical ensemble: the way we perform the functional in-
tegration is an implicit choice of the statistical ensemble.
The inverse scattering transform in the presence of a per-
turbation obtains the generic modifications of the soliton:
shape deformation (tail with a long plateau ending by an
oscillation part), decrease of the amplitude, and radiation
of linear waves. We choose to build implicitly the statisti-
cal ensemble, collecting all configurations which have the
same type of deformations (given in our formulas by exJ).
All of these configurations belong to the neighborhood of
the extremum in function space. We take them into ac-
count, by performing the integration over this space. In
doing so, we assume that the ensemble of perturbed con-
figurations induced by an “external” excitation (J below)
of the system is the same as the statistical ensemble of
the system’s configurations evolving from random initial
conditions. The response of the system to an external ex-
citation will be obtained by adding to the expression in the
integrand at the exponential a linear combination repre-
senting the interaction of the fields w and x with external
currents Jw and Jx . (More complex descriptions might be
necessary for situations like the superstrong Langmuir tur-
bulence, see [11].)

Z ! ZJ �
Z

D�w�x, t��D�x�x, t�� exp�iSJ� ,

SJ �
Z

dx0dt0 �x�x0, t0� bOw�x0, t0� 1 Jww 1 Jxx� .

(2)

For simplicity we shall consider in this work a single vortex
soliton. To obtain the explicit form of ZJ , the perturbed
soliton solutions wJs and xJs, depending on J (solutions
of dSJ�dw � 0, dSJ�dx � 0), must be introduced in
the expression of the action SJ (which will be noted SJs).
After that we perform the expansion of the functions w

and x about the coherent solution, w � wJs 1 dw and
x � xJs 1 dx. Denoting dF the column matrix with
elements dF1 � dw, dF2 � dx, we have
ZJ � exp�iSJs�
Z

D�dw�D�dx� 3 exp
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since the integral is Gaussian [12]. The determinant is calculated using the eigenvalues of the operator d2bO
dwdx jws ,xs :

det

√
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Ç
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!
�

Y
k

lk . (3)
4855



VOLUME 84, NUMBER 21 P H Y S I C A L R E V I E W L E T T E R S 22 MAY 2000
In general, the direct (i.e., the vortex plus random drift
waves) solution w arises from an initial perturbation which,
evolving in time, breaks into several distinct vortices (soli-
tons) and drift waves, as shown by the inverse scattering
method. The functionally conjugated (“regressive”) func-
tion x is, at t � `, a collection of vortices and drift-wave
turbulence which, evolving backward in time toward t �
0, coalesce and build up into a single perturbation, the same
as the initial condition of w, up to the sign. In general
x has opposite topology to w, which suggests x � 2w.
This is confirmed by the homogeneous equation for x:

�1 2 =2
��

≠x

≠t
1 yd

≠x

≠y
2 ydw

≠x

≠y
� 0

which, when compared to the equation for w, shows that
x � 2w is the solution. Since we are only interested
in correlations of the physical field, w we take Jx � 0
and note J � Jw . We have xJs�x, y, t� � 2ws�x, y, t� 1exJ �x, y, t�, where 2ws�x, y, t� represents the “free” solu-
tion of the variational equation, i.e., the negative vortex
(antisoliton), and exJ�x, y, t� is the small modification in-
duced by the inhomogeneous small term, J�x, y, t�. This
part is of central importance since it will react to the deriva-
4856
tion with respect to J, which gives the correlations, and in
general is extremely difficult to calculate. We have adapted
the results obtained by Karpman for the perturbed KdV
soliton [7]. We note that wJs�x, y, t� � ws�x, y, t�. Per-
forming the calculation we obtain the following:
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We change to the referential moving uniformly with the
diamagnetic velocity, t ! t and y ! y 2 ydt, and ne-
glect the slow motion of the soliton in the new frame. The
equation for the eigenfunction w and eigenvalues l can be
rewritten as w00 1 �l2t1 1 lt2 1 t3�w � 0 with the no-
tations
t1� y� �
1

y
2
d

h2 2 w2
s

h4 1
2

yd

ws

h4
exJ , t3� y� � 2

3
4

1
h2

µ
≠ws

≠y

∂2

,

t2� y� � 2
1

yd

µ
≠ws

≠y

∂
2c 2 h

h3 1
2

yd

� ≠ws

≠y �
h3

exJ 2
1

yd

1
h2

µ
≠exJ

≠y

∂
,

and c � k
2
�, h � c 1 ws. The function U�l; y� � l2t1 1

lt2 1 t3 has singularities at the points where h vanishes,
h�6yh� � 0. The total space interval is then divided into
three domains: �2L�2, 2yh� (external left,“l”), �2yh, yh�
(internal,“i”), and �yh, L�2� (external right,“r”). Here “in-
ternal” and external refer to the region approximately oc-
cupied by the soliton.

The function w must vanish at the limits of the three do-
mains and this condition generates discrete sets of eigen-
values. The infinite product of eigenvalues gives, for the
external regions,Y
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In the internal region, the infinite product of the eigenval-
ues is Y

n
li
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∑
sinh�b�2�

b�2

∏1�2 Y
n

�2i�2pn
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where s �
R2yh

2L�2 dy0 t2� y0� �t1� y0��21�2 and b � 221 3Ryh

0 dy0 t2� y0� �2t1� y0��21�2. The functions a1 and ac

will not contribute to the correlations. The generating
functional becomes
ZJ � exp�iSJs�
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where const �
Q

n� �2i�ac

2pn �1�2 a1

n will disappear after mul-
tiplying with Z21

J . The two-point correlation can be ob-
tained by a double functional differentiation at the external
current J:

	w� y2�w� y1�
 � Z21
J

d2ZJ

idJ� y2�idJ� y1�

Ç
J�0

.

The double functional differentiation clearly emphasizes
the mixing of the vortex solitons (terms from SJs) with
the turbulence formed by drift waves and wavelike soli-
ton tails, i.e., configurations which are taken into account
by the other two factors in Eq. (7). The expressions ofexJ and the formulas obtained by functional differentiation
of the generating functional are very complicated and a
numerical calculation is necessary. For Fig. 1 we have
chosen a particular value of the soliton velocity (which
also fixes its amplitude), u � 1.9yd , and let the variables
y1 and y2 sample the one-dimensional volume of length
L � 0.1 m. The physical parameters are chosen such that
rs � 1023 m and yd � 571 m�s. Since we do not take



VOLUME 84, NUMBER 21 P H Y S I C A L R E V I E W L E T T E R S 22 MAY 2000
−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

 k
1
ρ

s

 k
2
ρ s

FIG. 1. Contour plot of the spectrum at u � 1.9yd .

the random position of the soliton center (and then do
not average on it), the correlation is a function of two
space variables � y1, y2�. The contributions to the corre-
lation from the last two factors in Eq. (7) have amplitudes
similar or less by a factor of a few units, compared to the
pure soliton. The factors coming from the internal part
are peaked and localized on the soliton extension while
the external part gives terms oscillating on � y1, y2�. In
wave-number space, there are contributions to both low-k
and high-k regions. The spectrum of an unperturbed soli-
ton is smooth and monotonously decreasing from the peak
value at k � 0. Figure 1 shows much more structure. In
the low-k part there are many local peaks, an effective
manifestation of the periodic character of the terms [as
shown by Eq. (5)]. This arises from the discrete nature
of the eigenvalues, which is induced by the second order
differential operator and the vanishing of the eigenmodes
at the positions of the singularities � 6 yh. The singu-
larities are generated by the vanishing of the norm of the
operator ba, which makes ambiguous the assumption of
propagating wave character, ≠t � 2yd≠y . The large-k
part mainly reflects the structure of the small-scale per-
turbation of the soliton’s shape, comming from b-related
terms. Figure 2 is a �k, v� spectrum obtained from v 2

ku � 0 and repeating the calculations for various soliton
velocities umax . u . yd . Although we cannot afford
high umax since the expressions of t1,2,3� y� depend on the
assumption u * yd , we note the local peaks in contrast to
the “pure soliton” result of Ref. [9].
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FIG. 2. Contour plot of the �k, v� spectrum. The dotted line
is v � kyd .

In conclusion, we have shown that a nonperturbative
method (“semiclassical,” in field theory) can be applied
to plasma turbulence. This may considerably extend the
studies beyond the perturbative renormalization.
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