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Defect Chaos of Oscillating Hexagons in Rotating Convection
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Using coupled Ginzburg-Landau equations, the dynamics of hexagonal patterns with broken chiral
symmetry are investigated, as they appear in rotating non-Boussinesq or surface-tension-driven convec-
tion. We find that close to the secondary Hopf bifurcation to oscillating hexagons the dynamics are
well described by a single complex Ginzburg-Landau equation (CGLE) coupled to the phases of the
hexagonal pattern. At the band center these equations reduce to the usual CGLE and the system exhibits
defect chaos. Away from the band center a transition to a frozen vortex state is found.
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The interplay between theory and experiments is at the
heart of the progress made in recent years in the study of
pattern-forming systems far from equilibrium. One goal
is to achieve a reduced, universal description in terms of
Ginzburg-Landau or phase equations (e.g., [1]). Investiga-
tions of specific physical systems that allow a quantitative
comparison with precise experiments are essential to check
the available theories and often also to suggest new theo-
retical venues. This has been particularly successful for
ordered patterns (e.g., in Rayleigh-Bénard convection and
Taylor-Couette flow [2]).

For disordered patterns and spatiotemporal chaos a num-
ber of different systems have been under investigation
with the goal to achieve detailed comparison between ex-
periments and theoretical work. Spiral-defect chaos in
Rayleigh-Bénard convection with low Prandtl number ex-
hibits very rich dynamics (e.g., [3]). However, they do not
arise at small amplitudes and are therefore not accessible
by weakly nonlinear theory. In the presence of rotation the
Küppers-Lortz instability of convection rolls induces an-
other type of spatiotemporal chaos (e.g., [4]). Although it
occurs directly at onset a systematic theoretical treatment
within weakly nonlinear theory has not been successful due
to the isotropy of the system. In anisotropic electroconvec-
tion of nematic liquid crystals spatiotemporal chaos [5] can
be systematically described by coupled Ginzburg-Landau
equations. The derivation of these equations from the mi-
croscopic equations is, however, extremely involved and
not quite complete yet [6].

From a theoretical point of view the most attractive
and therefore most extensively studied canonical equation
exhibiting spatiotemporal chaos is the complex
Ginzburg-Landau equation (CGLE). It describes the onset
of oscillations in a spatially extended system. Despite its
simplicity it exhibits an extraordinary variety of complex
dynamics, including phase and defect chaos [7–12]. In
the latter regime spiral defects are created and annihilated
persistently in an irregular fashion, while in the former an
ever changing disordered cellular structure without defects
is observed. Furthermore, in other parameter regimes the
spiral defects can form disordered, frozen vortex states
0031-9007�00�84(21)�4838(4)$15.00
[7,13]. In the one-dimensional case many aspects of the
CGLE dynamics have been observed experimentally (e.g.,
localized solutions [14]). In two dimensions, however, no
detailed comparison of any of the theoretical regimes of
complex dynamics with experiments is available.

In this Letter we suggest that weakly nonlinear hexagon
patterns in rotating convection are a good candidate to
compare the theoretical results for spatiotemporal chaos
in the two-dimensional CGLE with experiments. Because
of the rotation the hexagons typically undergo a transi-
tion to oscillating hexagons, which are described by a
complex Ginzburg-Landau equation coupled to two phase
equations. We show that in a sufficiently large system the
oscillating hexagons exhibit a state of defect chaos that
is well described by the usual 2D CGLE. Depending on
the wave number of the underlying hexagons we find a
transition to a frozen vortex state, as is also the case in
the CGLE.

We consider three coupled Ginzburg-Landau equa-
tions, which describe the dynamics of hexagonal
patterns with broken chiral symmetry, as they appear
in rotating non-Boussinesq or surface-tension-driven
convection. These equations can be obtained from the
corresponding physical equations (e.g., Navier-Stokes)
by expanding the physical fields (e.g., the fluid ve-
locity) in Fourier modes on a hexagonal lattice, v �P3

n�1�Aneikc
n?x 1 c.c.� 1 higher-order terms with kc

1 1

kc
2 1 kc

3 � 0. The Ginzburg-Landau equations for the
small, slowly varying amplitudes An can be derived
systematically provided the quadratic resonant interaction
terms are small. After rescaling, the equations can be
written as

≠tA1 � mA1 1 �n̂1 ? =̃�2A1 1 A�
2A�

3 2 A1jA1j
2

2 �n 1 g�A1jA2j
2 2 �n 2 g�A1jA3j

2. (1)

The equations for the other two amplitudes are obtained
by cyclic permutation of the indices. The control parame-
ter m is related to the temperature difference across the
fluid layer, and n̂i is the unit vector in each of the three
directions defined by kc

i . The broken chiral symmetry
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manifests itself by the cubic cross-coupling coefficients not
being equal. The coefficient g is, therefore, a measure of
the rotation.

A study of the steady hexagons with wave number
k � jk1j � jk2j � jk3j slightly different from the critical
wave number for the onset of convection (k � kc 1 q)
and their sideband instabilities has been undertaken in
[15]. We focus here on the secondary Hopf bifurcation
that appears at m � mc � �2 1 n���n 2 1�2 1 q2

[16,17]. It gives rise to oscillating hexagons, in which the
three amplitudes of the hexagonal pattern oscillate with
frequency v � 2

p
3 g��n 2 1�2 and a phase shift of

2p�3 among them. As m is increased further, eventually
a point m � mhet is reached at which the branch of
oscillating hexagons ends on the branch corresponding to
an unstable mixed-mode solution in a global bifurcation
involving a heteroclinic connection [16–18]. Above this
point only the roll solution is stable. When jgj . n 2 1
the rolls are never stable and the limit cycle persists
for arbitrarily large values of m. In the absence of the
quadratic term in Eq. (1) this condition corresponds to
the Küppers-Lortz instability of rolls [19]. Far above
the Hopf bifurcation the periodic orbit is expected to
become anharmonic, and may somewhat resemble the
state encountered in the Küppers-Lortz regime of rotating
Boussinesq Rayleigh-Bénard convection [20,21].

To study the stability of the oscillating hexagons close to
the Hopf bifurcation point, the amplitudes An are expanded
as

An � �R 1 �e2pni�3pe Heivt 1 c.c.�

1 O �e�	ei�qn?x1
p

e fn�.

From the phases fn of each of the modes it is pos-
sible to construct a phase vector �f � �fx, fy�, with
fx � 2f2 2 f3 and fy � �f2 2 f3��

p
3 being re-

lated to translations in the x and y directions, respectively
[22]. Since the oscillating hexagons arise in a secondary
bifurcation, their amplitude H couples to �f, which is a
soft mode [23]. Eliminating the fast variables, we obtain
at order e3�2 the coupled equations

≠T H � m1d1H 1 j=2H 2 d2H= ? �f 2 rHjHj2, (2)

≠T
�f � D�=2 �f 1 Dk=�= ? �f� 1 D31�êz 3 =2 �f�

1 D32 �êz 3 =� �= ? �f� 1 a=jHj2

1 b1�êz 3 =� jHj2 2 ib2�H=H� 2 H�=H�

1 ih�H�êz 3 =�H� 2 H��êz 3 =�H� , (3)

where êz is the unit vector in the direction perpendicular
to the fluid layer, ≠T � e≠t , = � e1�2=̃, m � mc 1 em1,
v � 2

p
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32i
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1
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,
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2qv2

9R2 1 v2 2
2q�1 1 6R�

Ry
,

b1 �
6vq

R�9R2 1 v2�
, b2 � b1, h �

18q
9R2 1 v2 .

It is worth pointing out that the phase-amplitude equations
(2) and (3) can be deduced by means of symmetry argu-
ments alone and are, therefore, generic to this order in
e. In fact, they could be derived directly from the fluid
equations without the use of the Ginzburg-Landau equa-
tions (1). Thus, keeping higher order terms in (1) would
change the values of the coefficients in (2) and (3), but not
their form.

Central to the results presented in this Letter is the ob-
servation that for hexagons with rotation as described by
(1) the phase-amplitude equations (2) and (3) decouple at
the band center, since d2 � 0 for q � k 2 kc � 0. In
this case they reduce to the usual CGLE for the amplitude
of the oscillation. Rescaling time, space, and amplitude,
Eq. (2) can be written in the more usual form [7]:

≠T H � H 1 �1 1 ib1�=2H

2 �b3 2 i sgn�v��HjHj2, (4)

where b1 � ji�jr � 0 and b3 is given by

b3 �
rr

jrij
�

2jvjR�3R 1 1�
v2�1 1 4R� 1 8R2�1 1 2R�

. (5)

As v is increased by increasing the rotation rate
g, b3 reaches a maximum bmax

3 � bmax
3 �n� at

gmax �
p

2�n 2 1�2�n 1 1��3��n 1 3�. For any
value of n the coefficient b3 will move across the range
0 , b3 , bmax

3 as the rotation rate is varied. Note that
the dependence of bmax

3 on n is only weak and is limited
to the range 0.354 , bmax

3 , 0.375, as indicated by the
dotted vertical lines in Fig. 1. Thus, independent of n,
which depends on the physical properties of the system,
the oscillating hexagons are always in a regime in which
stable plane waves and defect chaos coexist (see Fig. 1).

We investigate the defect chaos regime by numerical
simulations of Eq. (1) using a pseudospectral method with
a 4th-order Runge-Kutta�integrating factor time-stepping
scheme and periodic boundary conditions. To allow for
regular hexagonal patterns we take a rectangular box of
aspect ratio Lx�Ly �

p
3�2. Figure 2 shows a picture of
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FIG. 1. Phase diagram for the CGLE (after [7]). Defect chaos
is found to the left of line T. Above the Benjamin-Fair (BF) line,
plane waves are long-wave unstable, resulting in a state of phase
chaos up to line L, bistable with defect chaos or a frozen vortex
state. The lines S1 and S2 represent the convective and absolute
stability limits of plane waves emitted by spirals. The vertical
dotted lines denote the limits for the range of bmax

3 [cf. (5)]. As
q is increased b1 decreases.

the hexagonal pattern in this regime. It consists of patches
of slightly roll-like hexagons, whose preferred direction
oscillates on a fast time scale. The patches change shape
and size on a slow time scale. The regions where almost
perfect hexagons can be observed (e.g., on the bottom left
part of the figure) correspond to the zeros (defects) of the
oscillation amplitude. In order to extract this complex am-
plitude H from the amplitudes An we use that close to on-
set

p
e�Heivt 1 H�e2ivt� 
 jA1j 2 �

P3
n�1 jAnj��3. The

amplitude H is obtained multiplying the former expres-
sion by e2ivt and taking the average over each period. A
snapshot of the magnitude jHj as obtained from Fig. 2 is
given in Fig. 3a, while in Fig. 3b we show the correspond-
ing lines Re�H� � 0 and Im�H� � 0, whose intersection
points correspond to the defects of H.

Away from the band center (q fi 0) b1 becomes nonzero
and is given by

FIG. 2. Reconstruction of the hexagon pattern c �P3
j�1 Aje

ikc
j ?x, with kc � 30p�Lx , obtained by simulat-

ing Eq. (1) in a box of length Lx � 50, Ly � 100�
p

3 with
128 3 128 modes, for m � 4.6, n � 2, g � 0.5, and q � 0.
The contour lines are taken at c � 20.7. The time difference
between the two snapshots is half a period of oscillation.
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b1 �
2�9R2 1 2v2�q2

�6q2R 2 9R2 2 v2�v
. (6)

The coefficient b3 remains unchanged. Depending on
the value of q the system can therefore cross the line T
(see Fig. 1), beyond which defect chaos no longer persists
within the CGLE (4). But, for q fi 0, the oscillation am-
plitude H is coupled to the phase �f. In order to study the
influence of this coupling in the defect chaotic regime we
measure the density of defects for Eq. (1) and for Eqs. (2)
and (3) as a function of q (accordingly b1) and compare it
with the results for the CGLE (4).

We begin with a perfect steady hexagonal pattern with
wave number k � kc 1 q, i.e., An � Reiqn?x, jqnj � q,
in Eq. (1), H � 0, �f � 0 in Eqs. (2) and (3), H � 0
in Eq. (4), and add noise of zero mean. If the system
is large enough the resulting oscillating state is not ho-
mogeneous but ends up in a persistent chaotic state. We
also checked numerically that a perfect oscillating state
in Eq. (1), An � �R 1 e2pni�3pe Heivt 1 c.c.�eiqn?x, is
linearly stable, although sufficiently strong perturbations
can destabilize it, giving rise to defect chaos. In the simula-
tions we use 64 3 64 modes, in a box of length Lx � 200
for Eq. (1) and for Eqs. (2) and (3), and L � 50 for the
CGLE (4), which roughly corresponds to the former after
rescaling. As the length scale j

1�2
r depends on q we take

the same box size Lx , Ly in all the simulations of (1) and of
(2) and (3) and then scale the density of defects appropri-
ately to compare with the results from the CGLE. After a
transient time, the number of defects is measured for a suf-
ficiently long time so the system is statistically stationary.
The results corresponding to the CGLE are the average of
three independent runs.

As can be seen in Fig. 4 the simulations of (1), of (2)
and (3), and of (4) agree very well up to the line S2, where
the spiral defects go from being absolutely to convectively
unstable. Since for q fi 0 the amplitude H is no longer
decoupled from the phases, the agreement indicates that
the phase does not have a strong influence on the dynam-
ics in this regime. Beyond line S2, after a chaotic transient,
the system settles down in a frozen vortex state in which

FIG. 3. Snapshots corresponding to Fig. 2 of the (a) modulus
of H, (b) lines Re�H� � 0 (solid) and Im�H� � 0 (dashed).
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the density of defects remains unchanged for long peri-
ods of time. Since this final state is history dependent a
quantitative agreement is harder to achieve. In particular,
it would require a more extensive sampling of initial con-
ditions. However, the agreement remains good. Beyond
line T still a small number of defects remain, probably be-
cause our simulations are not long enough given the weak
interaction of defects. If and to what extent the coupling
with the phase affects the lines S2 and T is not clear from
these simulations, but the qualitative picture remains the
same as in the CGLE. Note also that, for large values of
q, additional long-wave instabilities occur [24].

In conclusion, we have shown that within weakly non-
linear theory hexagons arising in rotating convection are
a good candidate to investigate two-dimensional defect
chaos. Because of the rotation the hexagons undergo a
Hopf bifurcation to oscillating hexagons. Although these
are usually linearly stable at the band center, finite pertur-
bations that excite defects lead to persistent spatiotemporal
chaos. In this regime the single 2D CGLE describes the
dynamics quantitatively. Farther away from the band cen-
ter we find a transition to a frozen vortex state, which is
also in agreement with the CGLE. The decoupling of the
phases and the amplitude that occurs at the band center
will be modified if higher-order corrections are taken into
account in the amplitude equation (1) [24]. Simulations in
which nonlinear gradient terms are included in (1) suggest,
however, that the qualitative picture remains the same. It
is worth noting that the dynamics discussed in this paper
(in particular, the spatiotemporally chaotic state) have been
obtained for values of the rotation rate below the Küppers-
Lortz instability. Therefore we expect that this genuinely
new regime of rotating convection is accessible in currently
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FIG. 4. Density of defects n as a function of the wave
number q for b3 � 0.355 (n � 2, g � 0.5, m � mc 1 0.1).
The circles correspond to the simulations of Eq. (4), while
the squares have been obtained simulating Eqs. (2) and (3). The
stars are the results obtained with the amplitude equation (1).
Between lines S2 and T the system ends up in a frozen state.
available experiments. We hope that these results will trig-
ger new experiments, which will contribute to a better un-
derstanding of the mechanisms of transition to spatiotem-
poral chaos.
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