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Observation of Superluminal Behaviors in Wave Propagation
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The possibility of observing superluminal behavior in the propagation of localized microwaves over
distances of tens of wavelengths is experimentally demonstrated. These types of waves, better than the
evanescent modes of tunneling, can contribute to answering the question on the luminal limit of the
signal velocity.

PACS numbers: 42.25.Bs
The principle that no signal can travel faster than the
light speed in vacuum is accepted as one of the basic laws
of nature [1]. Yet, there is no formal proof, based only on
Maxwell’s equations, that no electromagnetic wave packet
can travel faster than the speed of light. Therefore, there
may be a shadow of doubt as to whether this principle is
true in any case [2]. However, the question as to whether
a wave packet can be considered a signal is a much de-
bated and complicated one [3–6]. Superluminal effects
for evanescent waves have been demonstrated in tunnel-
ing experiments in both the optical domain and the mi-
crowave range [7–12]. What clearly emerges from these
works is that the delay time in crossing a barrier, the width
of which is comparable to the wavelength, is considerably
shorter than the time employed by traveling at the speed of
light in vacuum. This implies, however, that such an effect
can be revealed only over short distances—the limitation
being due to the evanescent field—which for microwaves
(the more favorable case) are of a few centimeters. The
question as to whether it is possible to extend this effect
over larger distances, apart from the obvious consequence
of increasing the wavelength, naturally arises. The pur-
pose of this paper is to demonstrate such a possibility in
the propagation of localized microwaves over distances of
some tens of wavelengths, that is, of the order of 1 m or
more, and to contribute to answering the above question
on signal velocity.

Experimental evidence of localized light waves in a cen-
timeter range (an appreciable one in view of the smallness
of the optical wavelength) has recently been given [13],
demonstrating a practical way of obtaining these types of
waves (X shaped). These waves, in fact, have been theo-
retically predicted and investigated as Bessel beams since
the 1980’s [14,15], and even before that date for their di-
rectivity properties [16], and then in connection with their
superluminal behavior [17,18]. The latter derives from a
cosu dependence, where u is the cone angle of the Bessel
beam. We have extended the experiment of Refs. [13,14]
in the microwave range, obtaining a magnification of the
effect (but a reduction in the relative field depth) by adopt-
ing u angles of the order of 0.3 0.4 rad. In the optical
experiments, instead, this angle is typically of the order of
1022 rad, which prevents the direct observation of super-
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luminal effects. The field of a Bessel beam is described
by the axisymmetric (w invariant) expression, which rep-
resents diffraction- and (dispersion-)free mode solutions,

J0�rk sinu� exp�i�zk cosu 2 vt�� . (1)

Here, J0 is the zeroth-order Bessel function of the first
kind, r is the transversal distance from the propagation
axis z, k � v�c is the wave number, and the parameter
u is the cone angle of the Bessel beam which has a top
angle 2u [13,14]. According to expression (1), the field
can be considered as built up as the superposition of pairs
of plane waves, the direction angles of which are (u, w)
and (u, w 1 p), i.e., X waves, that move along the z
axis with speed y � c�cosu that is both the phase and
the group velocity (when several k are considered) of the
wave field in the direction of the z axis. Clearly, y . c,
and the effect is more or less pronounced, depending on the
u angle. A beam having the characteristics of expression
(1) can be created, in practice, by a circular slit placed
in the focal plane of a lens [13,14] or, as in our case,
of a mirror. Ideally, each point along the slit acts as a
point source which the converging device (lens or mirror)
transforms into a plane wave tilted over the z axis by the
angle u � tan21�d�2f�, d and f being the mean diameter
of the slit and the focal length, respectively.

Figure 1 shows the experimental setup that we adopted
for our measurements at microwave scale �l � 3.5 cm�.
The circular slit, with a mean diameter of 7 or 10 cm,
is fed by a horn antenna (the launcher) connected to the
microwave generator through a waveguide, and placed in
the focal plane of a spherical mirror, the diameter of which
is 2R � 50 cm and the focal length f � 12 cm. In this
way, we operate with u angles of �16± or �23± which
should produce an increase in the velocity of 4% and 8%,
respectively. These variations were expected to be easily
detectable, even if the field depth of the Bessel beam,
given by R�tanu � 2Rf�d turned out to be only 86 or
60 cm, respectively. These situations were completely
different from the optical experiments, where u was less
than 1± and the field depth was about 1m (a consider-
able one, given the smallness of the wavelength), but the
superluminality was unobservable. A second horn antenna,
placed on the z axis at the distance L from the focal plane,
© 2000 The American Physical Society
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FIG. 1. The experimental setup for microwave measurements
consists of a circular slit with mean diameter d, fed by a horn
antenna (launcher) placed in the focal plane of a circular mirror
with radius R and focal length f, and of a second horn antenna
(receiver) placed at a variable distance L on the z axis.

acted as a receiver and was connected to the detector. The
microwave carrier �n � 8.6 GHz� was modulated by rect-
angular pulses, with rise and fall times of a few nanosec-
onds. The modulation was detected, before the launcher
and after the receiver, and the signals were sent to a two-
channel digital real time oscilloscope (Tektronix TDS
680B), where the delay time between the two pulses was
measured with a sensitivity of the order of 10 ps. The
results reported in Fig. 2 (filled circles) were obtained by
measuring the delay time as a function of the distance
L, in the 30–130 cm range, with a circular slit whose
diameter was �7 cm �u � 16±�. Note that there is an
offset of about 5 ns in the time scale, the delay relative to
L � 30 cm being about 1 ns.

These data can be reasonably fitted by a straight line,
the slope of which gives the inverse of the mean velocity.
From each pair of delay data, we evaluated the punctual
velocity as DL�DT : the results obtained are shown in the
upper part of Fig. 2, with their fiducial bars calculated as
d�DT�DL��DT �2 assuming d�DT� � 30 ps. We note that,
although each one is affected by a non-negligible error, the
velocity results tend to be placed appreciably above the
horizontal line of y � c � 30 cm�ns. A more quantita-
tive result was obtained by the linear fit of the delay data.
From this fit, we deduce that the delay over one meter is
3.155 ns, the ratio of which to 3.333 ns (the delay at light
velocity) gives 0.947, with a precision of 1.3%. The fit
of a second series of measurements (not shown in Fig. 2)
is represented by other parameter values: from these val-
ues, we obtain 3.093 ns for one meter, which gives a delay
ratio of 0.928 with an accuracy of 1.5%. The coefficient
of determination (or, more properly, the correlation coef-
ficient [19]) of these fits is r � 0.99931 for the case of
Fig. 2, and r � 0.99838 for the second series of measure-
ments: these values, very close to the unity (the maximum
value of r), represent very good fits. Therefore, within the
errors, these results confirm each other, although the per-
centage of superluminality �5.3% 7.2%� is slightly greater
(v=c)
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FIG. 2. Delay time measurements (filled circles) as a function
of distance L for a slit diameter d � 7 cm. The heavy con-
tinuous curve is a linear fit, with a slope less than the straight
line y � c. Velocity results (open circles with fiducial bars) re-
ported in the upper part indicate a slight superluminal behavior
(the mean velocity is appreciably greater than the light velocity
by 5.3%) even if it tends to disappear for L . 1 m.

than the predicted one which, as previously anticipated,
should have been about 4%.

In order to obtain a more evident result in the superlumi-
nality, we performed some measurements with a circular
slit of �10 cm in diameter �u � 23±�. The measured de-
lay as a function of distance L, in the 40–140 cm range,
is reported in Fig. 3 (filled circles). In this case, there is
an offset in the time scale of about 6 ns. These results
cannot be fitted, even roughly, by a straight line. For an
L greater than �1 m, the behavior is practically coinci-
dent with the straight line y � c, while the deviation is
more and more evident for the smaller distances and a good
description �r � 0.99955� was obtained by a second order
polynomial. In the upper part of Fig. 3, we report the ve-
locity results obtained as before with their fiducial bars,
while the continuous curve was obtained as the inverse of
the derivative of the fitting polynomial of the delay data.
We note that, although the velocity results are affected by
errors which strongly increase at the lower values of L,
the overall curve shows a clear superluminal behavior, pro-
vided that the distance is within 1 m (the mean effect over
this distance is about 25%, even if less pronounced effects
were also obtained in other measurements). This behavior
exceeds the one predicted for the Bessel beam: about 8%
on the basis of the simple geometrical model before being
adopted, and a field depth of less than 1 m.
4831



VOLUME 84, NUMBER 21 P H Y S I C A L R E V I E W L E T T E R S 22 MAY 2000
(v=c)

(v=c)

30 40 50 60 70 80 90 100 110 120 130 140

L(cm)

T(ns)

7

8

9

10

11

∆L
∆T

20

30

40

50

60

70

v= (cm/ns)
100±25

FIG. 3. Same as Fig. 2 for a slit diameter d � 10 cm. The
heavy continuous curve is a polynomial fit. The velocity results,
as deduced from delay data or from the inverse of the derivative
of the fitting curve, show a marked superluminality for L , 1 m.

The reasons for this enhancement are not completely
clear. One cause can be identified by considering that, at
lower L distances, the aberration of the mirror will favor
a more pronounced inclination of the rays (say, u 	 30±)
originating from the external region of the mirror (the cen-
tral region being shielded by the launcher horn). This,
although increasing the expected effect to about 14%, is
not sufficient to explain the strong observed one; other
reasons, to be found in a Fresnel-optics framework (not
merely a geometrical optics), are likely to be considered,
since we are in fact in near-field situations. We can men-
tion two facts in favor of this hypothesis:

(i) In the optical experiment of Ref. [14] the peak
intensity of the Bessel beam is reminiscent of the Fresnel
diffraction pattern close to a knife edge. However, it
is important to note that such behavior represents the
intensity away from the aperture (the lens) up to a distance
of about 1 m, rather than diffraction in the transverse
plane near the aperture.

(ii) In a microwave propagation experiment with two
horn antennas [20], a shortening of the pulse delay was
observed when the receiver horn was shifted with respect
to the launcher horn by an amount of 20 25 cm, taking
distance L at a fixed value. For L * 1 m, this effect is
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negligible, while it becomes more and more evident, up to
about a reduction of 100%, when L � 21 cm.

This behavior was interpreted on the basis of a complex
wave analysis, which leads to a cos�b 2 a� dependence,
where a is the angle of observation and b is the angular
coordinate of a pole singularity [21]. Therefore, also this
model is reminiscent of the present one. Again, however,
there is a strong difference since in the case of Ref. [20]
the axial symmetry was perpendicular to the z axis, while
in the present experiment we observed a superluminal ef-
fect going away from the aperture (the mirror), rather than
translating perpendicularly and producing an effect which
could be considered as a marginal one. As for the limited
field depth of the present experiments (less than 1 m, com-
parable with that of the optical experiments), it could be
augmented by reducing the u angle. We adopted u val-
ues as large as possible, in order to obtain clear evidence
of superluminality. Of course, by reducing u down to the
values of the optical experiments �u 	 1±� we could obtain
a field depth of some tens of meters; but the superluminal
effect should have been practically unobservable, as in the
optical experiments. Although strongly increasing the one
accessible in tunneling experiments, this range is not very
significant in a telecommunications context, even if it can
be extended to any distance whatsoever by appropriately
augmenting the aperture (or antenna dimensions) and re-
ducing the u angle [22]. More important is the significance
of the present results to fundamental physics.

Turning back to the question put at the beginning,
regarding the meaning to be attributed to the demonstrated
superluminality, we recall that there are at least two ways
of considering this meaning, which lead again to Ref. [5]
or Ref. [6], respectively. The superluminality in tunneling
processes is, in the case of Ref. [5], confined only in the
domain of group velocity, which can never be extended
to the signal velocity, while the point of view of Ref. [6]
is more disposed in this respect. A crucial role is played
by the spectral extension of any physical signal. In fact,
by following Brillouin [1] we find that the propagation
of a pulse (a single event) can be described by a contour
integral in the complex plane of the v frequencies. By
extending the integration domain to infinity, we find that
the first forerunner of the signal cannot arrive before
a time given by L�c. If, however, we limit the range
of integration, that is, by considering a finite spectral
extension of the signal, the result can actually be that
something arrives before the usual forerunner at a time t,
so that 0 # t # L�c and for short distances [23].

We are aware that a finite spectral extension does not
constitute a true signal (according to Brillouin) which, on
the contrary, requires an infinite spectrum. We note, how-
ever, that any practical signal necessarily has finite spec-
tral extension. The relative delay time, sometimes referred
to as technical signal or technical information delay [24],
does not necessarily coincide with the front-edge delay,
which requires considering the limit v ! `. This is a
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delicate point, since infinite frequencies do not exist in
physical phenomena [25] and, in practical applications
such as telecommunications, radar, etc., where there is no
question of propagation velocity, information travels over
finite (narrow) frequency channels.

The absence of dispersion (which, on the contrary, is
always present in tunneling systems) as in the case consid-
ered here, strongly simplifies the problem. In fact, we find
that all of the components in the spectral extension (due
to a modulation of the carrier) have the same propagation
velocity, y � c�cosu. This implies that the wave packets
are not deformed while propagating, without the so-called
“pulse reshaping” which is more or less always present in
tunneling processes. Some caution is required, however,
since the wave solutions (1) are rigorously exact only in
infinite free space, whereas any realization of these beams
will necessarily be limited by a finite aperture [14]. Thus,
as noted in Ref. [16], the intrinsic limitations of these tech-
niques imply a reduction, not an elimination, of diffractive
spreading. In spite of this, the waves tested here, which are
genuine superluminal solutions of the Maxwell equations
[22], in addition to and better than the evanescent modes
of tunneling, represent promising candidates for providing
an answer to the question raised at the beginning regard-
ing the existence of cases in which this principle does not
hold true.
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