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Temperature Dependence of the Polarizability of Sodium Clusters
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We calculate the static dipole polarizability at finite temperature of sodium clusters of size 8, 20,
40, 55, 93, and 139 using an extended Thomas-Fermi description of the valence electrons. We find
polarizabilities at 300 K that are roughly 15% greater than at 0 K, consistent with discrepancies between
theoretical polarizabilities at 0 K and measured polarizabilities. We predict that a sharp rise in the
polarizability, of about 5%, occurs for sizes of 55 and 139 when the cluster melts, offering the possibility
of an alternative method for measuring cluster melting points.

PACS numbers: 36.40.Cg, 31.15.Ew, 31.15.Qg, 36.40.Ei
The polarizabilities of small clusters of sodium and
potassium up to size N � 40 were first measured in 1984
by Knight et al. [1] in one of the earliest experiments on
free (unsupported) metallic clusters. They found polariz-
abilities that (depending on the cluster size N) were
from 30% to 100% larger than the classical polarizability
acl � R3

b of a perfectly conducting sphere of radius Rb �
rsN1�3 , where rs is the bulk Wigner-Seitz radius. Part of
this discrepancy could be explained as a finite-size effect.
Jellium-model calculations [2] in which the Na1 or K1

ions in the cluster were replaced by a uniformly charged
sphere of radius Rb gave an enhanced polarizability
ajel � �Rb 1 d�3, where d � 1a0 could be interpreted
as due to the “spillout” of electrons beyond the surface
of the jellium sphere. But ajel was generally still smaller
than the experimental polarizability. Since then, more
sophisticated calculations [3–10] of the polarizability at
0 K that retain the full three-dimensional ionic structure
of the cluster, and new measurements [10–12] of the
polarizabilities of alkali-metal clusters, have confirmed a
general trend in which (at least for N $ 8) theoretical po-
larizabilities at 0 K are slightly smaller than the measured
polarizabilities.

This discussion neglects the role of finite temperature,
which would be expected to increase the cluster volume
and, hence, its polarizability. Indeed, while in existing ex-
periments the clusters were not well thermalized and their
temperature was not well known, conditions were such that
temperatures of several hundred degrees Kelvin were to be
expected. It has recently become possible to control the
cluster temperature rather precisely [13], and it may soon
be possible to measure the polarizability as a function of
temperature [14]. In this Letter we estimate, for the first
time, the temperature dependence of the polarizability of
sodium clusters in the size range N � 8 139 by averag-
ing over large statistical ensembles of ionic configurations,
finding an increase in polarizability that is consistent with
the level of discrepancy between theory and experiment.

Since the effects of temperature on the polarizability
are relatively large (about 15% at 300 K), a measure-
ment of polarizability in which the temperature is con-
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trolled may allow one to observe a signature of the melt-
ing of a cluster. In this way, a polarizability experiment
might complement that of the Freiburg group [15], who
inferred the caloric curve of free sodium clusters in the
size range N � 50 200 from the temperature dependence
of the photofragmentation spectrum. They found cluster
melting points that are not only lower than the bulk melt-
ing point, as expected for a finite system, but show an
irregular variation with respect to cluster size that has still
not been fully understood theoretically. We show here that
a small, but in principle measurable, signature of melt-
ing may indeed be observed on the polarizability in some
cases, offering the possibility of a very useful independent
measurement of the cluster melting point.

We wish to consider sodium clusters up to a size N � 139
and to construct large statistical ensembles of ionic con-
figurations. To make this possible, we choose a simplified
description [16] of the cluster, within density functional
theory (DFT), in which the Na1 ions move classically
on a potential-energy surface that we obtain by treating
the delocalized valence electrons in the extended Thomas-
Fermi (ETF) approximation. Exactly as in Ref. [16], our
ETF approximation includes an exchange-correlation en-
ergy in the local-density approximation (LDA), a scaled
Weizsäcker correction for gradient corrections to the elec-
tron kinetic energy, and a local pseudopotential to describe
the electron-ion interaction; the computational cost of the
method scales with system size as O�N lnN�. We con-
centrate here on the experimentally accessible spherical
average of the polarizability, a � �axx 1 ayy 1 azz��3.
We extract a within the ETF approximation by a standard
“finite-field” algorithm, applying an electric field F to the
cluster and inferring the components of the polarizability
tensor from the induced dipole moment and, as a check,
the coefficient of the quadratic term F2 in the total energy.
The ionic coordinates are held fixed in each polarizabil-
ity calculation for a given ionic configuration. This ap-
proximation is known to modify the polarizability at 0 K
by about 1% [4,9] (at least for small clusters), and its ef-
fect on finite-temperature averages is thus expected to be
similarly small. We choose an applied field step size of
© 2000 The American Physical Society
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TABLE I. Spherically averaged polarizabilities (a3
0) at 0 K cal-

culated within the ETF approximation, using the “flat” pseudo-
potential of Ref. [16].

Na6
a Na7

a Na8
a Na20

a Na40 Na55
a Na93 Na139

634 672 765 1777 3356 4532 7600 10820

aOptimized geometries: Na6, pentagonal pyramid C5y; Na7,
pentagonal bipyramid D5h; Na8, decahedral D2d ; Na20, singly
capped double icosahedron; Na55, double Mackay icosahedron.

0.0005–0.001 a.u. with five different field values in each
of the x, y, and z directions. Further, the real-space grid
for the ETF solution was refined in such a way that purely
numerical errors in the polarizability calculation are less
than 1%.

Before discussing finite temperature, we shall first as-
sess the ETF approximation for cluster polarizabilities at
0 K (see Table I). In the bulk limit N ! `, assuming a
spherical geometry of radius R, one should expect to re-
trieve the classical result acl � R3. Such a trend is con-
firmed for our ETF polarizabilities in Fig. 1, where we
have considered three possible definitions of R for a fi-
nite system of discrete ions: Rb � rsN21�3, an “ionic”
radius Rion, and an “electronic” radius Rel, the latter two
defined, respectively, in terms of the mean-square radii of
the ionic and electronic distributions, R2

ion � 5�3 �r2�ion
and R2

el � 5�3 �r2�el. Note that a�R3
b and a�R3

ion are
each greater than unity, while a�R3

el is closer to unity for
all N , consistent with the notion of an electron spillout.

The ETF polarizabilities are also in good general agree-
ment with Kohn-Sham (KS) calculations taken from the lit-
erature for Na6-Na8 and Na20, which are given in Table II
together with some new calculations for this work us-
ing Gaussian basis-set orbitals [17,18]. As is apparent
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FIG. 1. Spherically averaged polarizabilities at 0 K calculated
within the ETF approximation, scaled by three choices of R3

(see text).

from Table II, the recent literature for DFT-KS calcu-
lations shows a spread of values for polarizabilities of
about 20% according to the choice of pseudopotential (or
the use of all-electron methods) and the use of the LDA
versus gradient-corrected exchange-correlation functionals
(GGA). Some of this spread is simply due to the differ-
ing bond lengths assumed, as each author has relaxed the
ionic structure in their chosen approximation. If in our
own calculations, however, we freeze the bond lengths
of Na8 at those for the penultimate row of Table II, and
perform all-electron calculations of the polarizability, we
obtain a � 732a3

0 (GGA-B3LYP), 755a3
0 (GGA-PW91),

and 719a3
0 (LDA), a spread of 5% merely from differing

choices of GGA or use of the LDA in the polarizability cal-
culation. While the use of DFT thus necessarily leads to
some uncertainty even at 0 K, we note that all theoretical
TABLE II. Spherically averaged polarizabilities (a3
0) at 0 K calculated within the KS approxi-

mation. Notation: “psp,” pseudopotential; “all,” all-electron; P86, B88-P86, B88-PW91, and
B3LYP denote gradient-corrected exchange-correlation functionals using standard notation [18].

Author Method Na6
a Na7

a Na8
a Na20

a

Moullet [3] psp LDA 603 619 655
Guan [4] all LDA 612
Rubio [5] psp LDA 803
Pacheco [6] psp LDA 770 1830
Vasiliev [7] psp LDA 794
Calaminici [8] all LDA 621 658 710
Kümmel [9] psp LDA 725 831 1980
Guan [4] all P86 603
Guan [4] all B88-P86 640
Rayane [10] all B88-PW91 709 756 806
Calaminici [8] all B88-P86 682 722 775
This workb all B3LYP 646 688 741 1728
Expt.c [10] 754 808 901 2045

aOptimized geometries are as in Table I, except for Na20: double icosahedron minus one end
cap plus two caps on waist.
bBasis set: 6-311G* for structure relaxation, 6-311G** (Na6-Na8) or 6-31G* (Na20) for polar-
izability calculations.
cExperimental errors are estimated to be about 12%.
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values in Table II are less than the corresponding experi-
mental values (although some are contained within the ex-
perimental error bars of roughly 12% [10]).

Now let us turn to finite temperature. For this we shall
take advantage of ETF molecular-dynamics (MD) trajecto-
ries, at closely spaced values of the (constant) total energy,
that we used previously [19] to extract the ionic entropy
of the cluster via a multiple-histogram analysis. Typically,
we use MD runs of 50 ps for each total energy E (or split
longer runs into 50 ps segments). Let �X�E be the time av-
erage, at energy E, of some property X��RI �� that depends
on the ionic coordinates �RI �. Then the canonical average
of X at temperature T is given by

�X�T �
Z `

E0

p�E, T � �X�E dE , (1)

where p�E, T � � V�E� exp�2E�kBT��Z�T � is the usual
Gibbs distribution for the probability of observing an en-
ergy E at temperature T , V�E� is the density of states
obtained from the multiple-histogram analysis, and Z�T� is
the normalizing canonical partition function. The thermal
fluctuation dX2 � �X2�T 2 �X�2

T of X may be obtained
in a similar way, with �X2�T given by Eq. (1) with X re-
placed by X2. The property X could be a, R3

ion, or R3
el.

To illustrate this approach in practice, we show “raw” MD
data for a for Na8 in Fig. 2(a), where each point represents
the time average of a over an independent 50 ps MD run
(there are 308 such points). The spread of values in the
figure is a statistical effect due to the finite duration of this
time average. After applying Eq. (1) to get the canonical
average in Fig. 2(b), however, the data are automatically
smoothed, since the integral acts as a weighted moving
average.

Figure 3 shows the canonical averages of a, R3
ion, and

R3
el calculated in this way for a range of cluster sizes,

with each property scaled so that it is unity at T � 0.
Note that the larger clusters considered here are singly
charged, while a practical experiment would require a neu-
tral cluster. However, we find less than 1% difference be-
tween scaled averages �a�T ��a�T�0 for neutral and singly
charged clusters for all temperatures T , 300 K, when
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FIG. 2. Polarizability of Na8 in (a) microcanonical and (b) ca-
nonical ensembles (see text). The dotted lines in (b) indicate the
intrinsic thermal fluctuation of the polarizability.
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calculated for a given ensemble of ionic configurations.
Our reason for considering singly charged clusters here is
again to profit from large existing statistical ensembles of
ionic configurations, with good statistics particularly in the
important region of the solid-liquid transition.

The first point to note from Fig. 3 is that the simple
estimates R3

ion and R3
el both overestimate the fractional in-

crease of polarizability with temperature. The overestimate
is rather large for small clusters, but as would be expected
R3

ion and R3
el give better approximations to the temperature

dependence as the cluster size increases, and R3
el gives a

slightly better approximation than R3
ion for all N . The es-

timate R3
ion is of particular interest, since it requires no

electronic structure calculations and can thus be calculated
with (computationally much cheaper) semiempirical inter-
ionic potentials. We note that, among the many approxi-
mations involved in taking R3

ion and R3
el as estimates of a,

there is an implicit assumption that all ionic configurations
in the thermal ensemble are spherical. In fact, many de-
formed shapes contribute, and for these R3 does not give
the polarizability even in classical electrostatics.

Second, at 300 K the polarizability is roughly 15%
greater than its value at 0 K for all sizes studied here, an
increase substantially greater than would be inferred from
the bulk thermal expansivity (�5%). This demonstrates
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one standard deviation) on a. Each property is scaled by divid-
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the importance of the cluster surface, which comprises
most of the atoms of the cluster even at a size of N � 139.
A similar result has been found for Na20 in a tight-binding
model [20]. This large increase in polarizability is con-
sistent with the observed discrepancies between theory
at 0 K and experiment apparent in Table II. However,
both the polarizability at 0 K (calculated within DFT) and
the experimental temperature of the clusters are subject
to sufficient uncertainty at this point that it is difficult to
make a precise quantitative comparison.

Finally, while the smaller clusters Na8-Na40 show a
rather smooth increase of polarizability with temperature,
Na1

55 and Na1
139 each show a distinct step in polarizability

of about 5% at around 150 K, extending over a range
of about 30 K. These steps correlate precisely with the
solid-liquid transition of the cluster, studied in Ref. [19]
within an identical ETF approximation. For instance, the
canonical specific heat of Na1

139, shown in Fig. 4, has a
distinct peak at 155 K in the ETF approximation, which
an inspection of ionic trajectories confirms as corre-
sponding to the melting of the cluster [19]; the canonical
specific-heat curves for the smaller clusters are much
broader. The cluster Na1

93, although possessing a fairly
sharp melting transition at about 125 K, has a smaller
polarizability step (�1.5%) at this temperature. In all
cases, a step in the polarizability correlates with similar
steps in R3

ion or R3
el. The marked increase in cluster

volume for Na1
55 and Na1

139 on melting is presumably
because, in the ETF model, these systems exhibit compact
low-temperature structures at or close to icosahedral shell
closures. The structure for Na1

93, by contrast, consists of
surface growth on one side of an icosahedral core [19].

We should note that the melting point, which can be
quite sensitive to the assumed interionic potential, is in
the ETF model about two-thirds of the value measured
by Schmidt et al. [15]. Thus, in a more realistic model
the position of the step in the polarizability curve may be
shifted, but we believe that the present ETF model gives
a sufficiently good representation of the metallic bonding
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FIG. 4. Canonical specific heat of Na1
139 calculated within the

ETF approximation (from Ref. [19]). The quantity C0 � �3N 2
9�2�kB is the zero-temperature classical limit for the vibrational
plus rotational specific heat.
of the cluster that the step will remain as a qualitative fea-
ture of the temperature dependence curve in any realistic
model. (The melting point would also vary somewhat be-
tween charged and neutral clusters.) Moreover, the step
for Na1

55 and Na1
139 is a sufficiently distinct feature of the

temperature dependence curve that it would be experimen-
tally detectable if the average polarizability at fixed tem-
perature can be measured with sufficient precision, say, to
better than about 2% in the vicinity of the solid-liquid tran-
sition. As noted in the introduction, this would provide a
valuable independent measurement of the melting point.
We hope that these comments offer an incentive to experi-
mentalists to measure the temperature dependence of the
polarizability.
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