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General Theory of Lee-Yang Zeros in Models with First-Order Phase Transitions
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We present a general, rigorous theory of Lee-Yang zeros for models with first-order phase transitions
that admit convergent contour expansions. We derive formulas for the positions and the density of the
zeros. In particular, we show that, for models without symmetry, the curves on which the zeros lie are
generically not circles, and can have topologically nontrivial features, such as bifurcation. Our results
are illustrated in three models in a complex field: the low-temperature Ising and Blume-Capel models,
and the q-state Potts model for large q.
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Almost half a century ago, in two classic papers [1], Lee
and Yang studied the zeros of the Ising partition function in
the complex magnetic field plane, showed rigorously that
the zeros lie on the unit circle, and proposed a program
to analyze phase transitions in terms of these zeros. A
decade later, Fisher [2] extended the study of the Ising
partition function zeros to the complex temperature plane.
Since that time, there have been numerous studies, both
exact and numerical, of the Lee-Yang and Fisher zeros in
a wide variety of models [3]. However, with a few notable
exceptions [6], remarkably little progress has been made
in extending the rigorous Lee-Yang program. This is due
to the fact that rigorous statistical mechanics has relied
almost exclusively on probabilistic techniques which fail
in a complex parameter space. In this Letter, we adapt
complex extensions [7–9] of Pirogov-Sinai theory [10] to
realize the Lee-Yang program in a general class of models
with first-order phase transitions.

The purpose of this work is threefold. First, it is of inter-
est to establish the mathematical foundation of a program
that has been so central to statistical physics. Second, our
theory gives a novel physical interpretation of the existence
and position of partition function zeros by relating them to
the phase coexistence lines in the complex plane. Finally,
from a practical viewpoint, our theory provides a frame-
work for the interpretation of numerical data by allowing
explicit, rigorous computation of the position of the zeros.
Indeed, we find rigorous results which clarify many ambi-
guities in published data. Specifically, in models without
an underlying symmetry, we prove that the zeros generi-
cally do not lie on circles, even in the thermodynamic limit.
This applies, in particular, to the Blume-Capel and Potts
models in complex magnetic fields; see [4,5] for heuris-
tic studies of these models. We also prove that the curves
defined by the asymptotic positions of the zeros can have
topologically nontrivial features, such as bifurcation and
coalescence, and show that these features correspond to
triple (or higher) points in the complex phase diagram.

The results to be stated next are rather technical.
Roughly speaking, they say that, for models with a con-
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vergent contour expansion, the partition function can be
written in the form (1) and its zeros are given as solutions
to Eqs. (2) and (3). Readers unfamiliar with rigorous
expansion techniques are encouraged to see the concrete
examples following the main results.

Main result.—Consider a d-dimensional lattice model
with n equilibrium phases whose interaction depends on a
complex parameter z. Suppose d $ 2 and that z is in the
region (typically, a large disk or all of �) where the model
admits a contour representation with strongly suppressed
contour weights. Under suitable conditions [7,8,10], there
are complex functions f� � f��z�, � � 1, . . . , n, such that
the partition function in a periodic volume V � Ld at in-
verse temperature b can be written as

Z
per
L �

nX

��1

q�e2bf�V 1 O �e2L�L0e2bfV � . (1)

Here L0 is of the order of the correlation length, f �
minkRefk , and q� is the degeneracy of the phase �. Physi-
cally, f� can be interpreted as metastable free energies
with the stability of the �th phase being characterized by
the condition Ref� � f. If � is stable, f� is just the free
energy of the system with boundary condition � [11]. In
the region where � is not stable, f� is constructed as a
smooth extension of f� from the stable region. Clearly, f�

depends on the parameters of the model, but not on L.
Equation (1) can be used to locate the zeros of Z

per
L ana-

lytically. Excluding a neighborhood of size dL � L2�d21�

of the triple or higher coexistence points [12] and assuming
a degeneracy removing condition [13], each zero of Z

per
L

lies within O �e2L�L0� of a solution to the equations

Refeff
�,L � Refeff

m,L , Refeff
k,L for all k fi �, m , (2)

bV �Imf� 2 Imfm� � p mod 2p , (3)

for some � fi m, where feff
�,L � f� 2 �bV �21 logq�.

In fact, the solutions to (2) and (3) are in one-to-one
correspondence with the zeros of Z

per
L . As a consequence,

the zeros of Z
per
L asymptotically concentrate on the

phase coexistence curves Ref� � Refm with the density
1

2p bV j�d�dz� � f� 2 fm�j. Inside the dL neighborhood
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of the multiple coexistence points, both the analysis
and the resulting equations for the zeros are now more
complicated; see [9] for details. However, it turns out
that all but a uniformly bounded number of zeros (out of
the total of order Ld) can be accounted for by the simple
Eqs. (2) and (3).

The proof, which appears elsewhere [9], is technically
complicated, but the main idea is simple. The key input
is a complex version of methods developed mainly in the
context of finite-size scaling [7,8,10] leading to Eq. (1)
and similar expressions for the derivatives of Z

per
L . Equa-

tions (2) and (3) for the zeros of Z
per
L arise from “destruc-

tive interference” of two terms, q�e2bf�V and qme2bfmV ,
in the sum in (1). Outside the dL neighborhood of multiple
coexistence points, all other terms are negligible.

To illustrate our result, we will discuss three specific
models in the presence of a complex external field.

Ising model.—The nearest-neighbor Hamiltonian is

bH � 2J
X

�x,y�
sxsy 2 h

X

x
sx .

Here sx [ �21, 11�, the coupling J . 0 is taken large
enough to ensure absolute convergence of the low-
temperature expansion, and h is the complex external
field. Neglecting the error term, Eq. (1) becomes

Z
per
L � e2bf1V 1 e2bf2V .

This leads to the following equations for the zeros:

Re� f1 2 f2� � 0 , (4)

Im� f1 2 f2� � �2k21�p
bV , k � 1, . . . , V . (5)

Inserting the low-temperature expansions of f6,

bf6 � 7h 2 dJ 2 e24dJe72h 1 R�6h� ,

where R�h� and its derivative are both O �e24�2d21�J�, we
find that the zeros occur at e2h � eiuk , with

uk �
�2k21�p

V 1 2e24dJ sin� �2k21�p
V � 1 O � k

V e24�2d21�J� ,

k � 1, . . . , V . Moreover, the h $ 2h symmetry can be
used to prove that condition (4) is equivalent to Reh � 0,
guaranteeing that the zeros of Z

per
L lie within an O �e2L�L0 �

neighborhood of the unit circle. The h $ 2h symmetry
of the partition function then allows us to conclude that,
for large L, the zeros lie exactly on the unit circle; see the
end of the Blume-Capel section for details of an analogous
argument. This gives an alternative proof of the Lee-Yang
circle theorem at low temperatures [9]. We stress that sym-
metry is the key factor here; in the absence of symmetry,
(4) does not, in general, lead to circles.

Blume-Capel model.—The Hamiltonian [14] is

bH � 2
X

�x,y�
J�sx 2 sy�2 2

X

x
�ls2

x 1 hsx� ,
with spins s [ �21, 0, 11�, real parameters J . 0 and
l, and complex field h. For J large, the real �l, h�-phase
diagram features three phases labeled by 1, 0, and 2, each
with an abundance of the corresponding spin.

The zeros of this model are shown in Fig. 1. Note that
the zeros have a nonuniform distribution, forming curves
of noncircular shape, and that, for l in a certain interval
�l2

c , l1
c �, bifurcation (i.e., splitting of the curve) occurs.

In the remainder of this section, we rigorously establish
these features for large J. Before beginning our analy-
sis, we remark that in [4] a phenomenological theory of
partition function zeros based on [8] was developed and
then applied to the Blume-Capel model. In contrast to
our approach, that of [4] gives no quantitative estimate of
approximations or errors, and it misses certain important
qualitative features, namely, the bifurcation.

Fix J large and let eh � z � reiu . Our analysis is done
in two steps. First, we focus on the unit circle, r � 1, and
identify l6

c and the position e6iuc�l� of the splitting points.
Then we extend the analysis to all r .

The J � ` phase diagram has three ground states, s 	
21, 0, 1, with energy densities 2l 1 h, 0, 2l 2 h. The
large-J expansions of the free energies are
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FIG. 1. The 128 zeros of the partition function of the Blume-
Capel model in the complex eh plane, for the 8 3 8 periodic
square grid at e24J � 1�16 and el � �a� 0.9, (b) 0.94, (c) 1,
and (d) 1.07. The actual zeros lie within a distance of order
e210J 1 e2L�L0 of those depicted. For l , l2

c 
 2e24J , the
outer region of the 1 phase is separated from the inner 2 phase
by an annular region of the 0 phase (a); asymptotically, the zeros
lie on the boundaries of these regions. As l increases through
l2

c , the two boundaries coalesce on the left-hand side, leading to
bifurcation for l . l2

c . The common boundary grows [(c) and
(d)] and, eventually, at l � l1

c 
 e24J , the 0 phase disappears
and bifurcation terminates. For l . l1

c , all zeros lie on the unit
circle.
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e2bf1 � zel exp� 1
z e2l24J 1 2 1

z2 e22l26J 1 R1�z�� ,

e2bf2 �
1
z el exp�ze2l24J 1 2z2e22l26J 1 R2�z�� ,

e2bf0 � exp��z 1
1
z �el24J

1 2�z2 1
1
z2 �e2l26J 1 R0�z�� ,

which, for brevity, we write only for d � 2 [15]. Here,
R6�z� and R0�z� and their first two derivatives are all
O �e28J�. There are no phase degeneracies, q0 � q6 � 1.

By Eq. (2), the analysis of the loci of the zeros requires
comparison of Ref1, Ref2, and Ref0. On the unit circle,
Ref1 � Ref2. Thus, it suffices to study the sign of D6 �
Rebf6 2 Rebf0. For jlj ¿ e24J , sgn�D6� � 2sgnl.
So let l � O �e24J�. Then, for J large,

D6 � 2l 1 e24J�2el 2 e2l� cosu 1 O �e26J� , (6)

so that �d�du�D6 , 0 for u [ �0, p� [16] and, simi-
larly, �d�dl�D6 � 21 1 O �e24J�. This implies the
existence of l6

c � 6e24J 1 O �e26J� and uc�l�, with
uc�l� [ �0, p� for all l [ �l2

c , l1
c �, such that, on the unit

circle, 0 is the only stable phase for all u when l , l2
c

and for juj , uc�l� when l [ �l2
c , l1

c �, whereas 6 are
the only stable phases in the complementary region of
�l, u�. Moreover, uc�l� decreases with l and uc�l� ! 0
(respectively, p) when l " l1

c (respectively, l # l2
c ).

Now let r be arbitrary. We have �d�dr� Ref6�z� �
6r21 1 O �e24J� and �d�dr� Ref0�z� � O �e24J�. Us-
ing the symmetries of the model,

Ref6�z� � Ref7�z21�, Ref0�z� � Ref0�z21� ,

it follows that there is a function u � r�u�, 0 # 1 2

r�u� # O �e24J�, r�u� � r�2u�, such that 2 is stable for
r # r�u�, 0 is stable for r�u� # r # 1�r�u�, and 1 is
stable for r $ 1�r�u�. Notice that r�u� � 1 for juj $

uc�l� when l2
c # l # l1

c and for all u when l . l1
c .

Consider now L ¿ L0 and suppose there is a partition
function zero at z0 � reic . If r�c� , 1, then the zero
lies close to one of the curves defined by the equations
D6 � 0. We claim that these curves are noncircular and
that the zeros do not maintain a uniform spacing along
them. Indeed, set l � 0 for simplicity and observe that

eD6 � jz71 exp�z61e24J 1 2z62e26J 1 O �e28J��j .

Replacing z61 by x 1 iy, the equation D6 � 0 and the
expansion of the exponential up to O �e28J� yield

x2 1 y2 � 1 1 2xe24J 1 4�x2 2 y2�e26J 1 O �e28J� .

This is an ellipse centered at e24J 1 O �e28J� with semi-
axes 1 6 2e26J 1 O �e28J�. To determine the density of
zeros, we compute j�d�dz� � f6 2 f0�j and easily verify
that it is nonconstant on the above ellipse.

If, on the other hand, r�c� � 1 [17], then, for L large
enough, the zero necessarily lies exactly on the unit circle,
4796
r � 1. Indeed, by (2), (3), and the degeneracy removing
condition [13], the distance between two adjacent zeros
is of order L2d . But we also have jr 2 r�c�j � jr 2

1j # O �e2L�L0�, and, if r fi 1, then by symmetries of
the model there would be another zero at z̄21

0 � r21eic .
However, jz0 2 z̄21

0 j # O �e2L�L0� ø L2d , a contradic-
tion. A similar argument proves a “local” version of the
Lee-Yang theorem [18] in a large class of models for which
the standard, “global” theorem fails.

Potts model.—The Hamiltonian is

bH � 2J
X

�x,y�
dsx ,sy 2 h

X

x
dsx,1 , (7)

with spins s [ �1, 2, . . . , q�, real coupling J . 0, and
complex field h. For h � 0 this is the standard Potts
model, with a q-fold degenerate ordered phase at large
J and a disordered phase at small J , coexisting at J

q
c 


1
d logq. The transition is first order for large q [19], while
it is presumably second order for q # qc�d�. For h fi 0
and q large, the phase diagram was determined first by for-
mal expansion [20], and recently by rigorous probabilistic
methods [21]. The Lee-Yang zeros of (7) were studied nu-
merically in [5], where it was suggested that the zeros lie
on almost circular curves slightly outside the unit circle,
for J both above and below J

q
c . While, by three-phase co-

existence, this turns out to be incorrect for J , J
q
c (see

Fig. 2), we prove that this is indeed the case for J $ J
q
c ,

thus resolving a controversy in [5].
The model (7) has three phases: the disordered phase

(D) with degeneracy qD � 1; and two ordered phases—a
magnetized (M) and a nonmagnetized (O) phase—with
degeneracies qM � 1 and qO � q 2 1, characterized by
abundances of sx � 1 and sx � const fi 1, respectively.
Let us abbreviate z � eh, kd � d�2d 2 1�, Q�k�

z � q 2 1 1

zk , and Qz � Q�1�
z . The free energies are given [21] by
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FIG. 2. Complex eh diagram showing the zeros of the Potts
model in a three-dimensional periodic box of size V � 1000
with parameters q � 25, e3J�q � �a� 1.185 and (b) 1.155. In
each case, there are 1000 zeros distributed on three noncircular
arcs, labeled A, B, and C, with those on A and B denser than
those on C. The outer region corresponds to the ordered mag-
netized phase, while the regions left, respectively, right of arc
C contain the ordered nonmagnetized and disordered phase. For
V large, arc C shows up first at J � J

q
c , passes through zero at

J � J
q21
c , and disappears at J 
 J

q22
c .
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e2bfD � Qz exp�d�eJ 2 1�Q�2�
z �Q2

z 1 kd�eJ 2 1�2Q�3�
z �Q3

z 2 �kd 1 1�2� �eJ 2 1�2�Q�2�
z �Q2

z �2 1 O �1�q324�d�� ,

e2bfM � z exp�dJ 1 e22dJ�Qzz
21 2 1� 1 de2�4d21�J�Q2

z 1 eJQ�2�
z �z22 2 �d 1 1�2�e24dJQ2

z z22 1 O �1�q322�d�� ,

e2bfO � exp�dJ 1 e22dJ�Qz 2 1� 1 de2�4d21�J�Q2
z 1 eJQ�2�

z � 2 �d 1 1�2�e24dJQ2
z 1 O �1�q322�d�� .
The zeros of the periodic Potts partition function are
depicted in Fig. 2. In particular, for J2 , J , J1 (where
J1 � Jq

c and J2 
 Jq22
c ), the loci do not lie on a single

closed curve but rather split the complex plane into three
pieces, corresponding to the regions of stability of the three
phases above. The number of zeros on the inner arc is
roughly V��2pq�, so one needs to take V quite large and
tune J to fall inside the narrow window �J2, J1� to find
any interior zeros. This explains why these zeros were not
detected in previous numerical work [5].

Despite their appearance, none of the curves in Fig. 2 is
a circle. This is verified by finding the coexistence curves
(2) for three distinct pairs k, � [ �D, M, O�. When J $

J
q
c , only phases M and O are relevant, and the asymptotic

location of the zeros is given by RefO � RefM . For z �
reiu , this easily implies

r � 1 1 qe22dJ�1 2 cosu� 1 O �1�q2� ,

so that, for J $ J
q
c and V ! `, all zeros with

juj ¿ 1�pq are asymptotically outside the unit circle. By
invoking arguments similar to [16], this extends to all
u [21]. There are two finite-volume corrections: an
outward shift of order 1�V due to fO . feff

O,L [see
Eq. (2)] and an error O �e2L�L0� coming from (1). Since
1�V ¿ O �e2L�L0�, this proves the initial numerical
observation in [5].

To make the interesting features clearly visible, Figs. 1
and 2 were drawn for values of e24J and q for which we
have not proved convergence of our expansions. However,
as established above, all the depicted behaviors indeed
occur once e2J (or 1�q) and e2L�L0 are small enough.

In summary, we identify the loci of complex zeros with
the complex phase coexistence curves. For particular mod-
els, we use this identification to map the precise location of
these zeros. We find that, in general, the loci are nonuni-
form and that the resulting curves are noncircular; if more
than two phases are present, the curves also have bifurca-
tion (i.e., splitting) points.
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