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We introduce a method of solving initial boundary value problems for linear evolution equations in
a time-dependent domain, and we apply it to an equation with dispersion relation v�k�, in the domain
l�t� , x , `, 0 , t , T . We show that the solution of this problem admits an integral representation
in the complex k plane, involving either an integral of exp�ikx 2 iv�k�t�r�k� along a time-dependent
contour, or an integral of exp�ikx 2 iv�k�t�r�k, k� over a fixed two-dimensional domain. The functions
r�k� and r�k, k� can be computed through the solution of a system of Volterra linear integral equations.
This method can be generalized to nonlinear integrable partial differential equations.

PACS numbers: 02.30.Jr, 02.30.Rz, 02.60.Lj, 05.45.Yv
The aim of this Letter is to introduce a method for
solving initial boundary value problems for linear evolu-
tion equations in a time-dependent domain. This method
can be applied to an arbitrary linear evolution equation.
For simplicity, we will consider the domain l�t� , x , `,
0 , t , T , where l�t� is a given differentiable function of
t whose first derivative is monotonic, and T is a positive
fixed constant. Although such problems appear naturally in
applications, only the case of equations which are second
order in the space derivative has been extensively studied.
For problems with higher order derivatives, one encounters
significant difficulties. For example, even if one wants to
study such problems numerically, one must first resolve the
question of identifying the number of boundary conditions
needed at x � l�t� for the problem to be well posed.

This method is the implementation in the case of mov-
ing boundary problems of the general approach for solving
boundary value problems announced in [1]. Let q�x1, x2�
satisfy a linear partial differential equation (PDE) with con-
stant coefficients in the domain �x1, x2� [ V. The ap-
proach of [1] involves the following steps: (a) Given
the PDE, construct two compatible eigenvalue equations.
(b) Given V, perform the simultaneous spectral analysis
of these two equations. Step (b) means constructing a
function m�x1, x2, k� which solves both eigenvalue equa-
tions and which for �x1, x2� [ V, is bounded in k for all
complex k, where k is the spectral parameter of the eigen-
value equations. It was shown in [2] that for polygonal
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domains the function m is sectionally analytic, with jumps
across fixed curves. Thus m�x1, x2, k� can be constructed
through the solution of a Riemann-Hilbert (RH) problem
[3,4]. This, in turn, yields an integral representation for
q�x1, x2� which involves an integral along a fixed contour
in the complex k plane.

The novelty of moving boundary value problems is that
the above RH problem must now be replaced by either a
RH problem formulated with respect to a time-dependent
contour, or by a d-bar problem [3] formulated with respect
to a fixed two-dimensional domain. This, in turn, yields
an integral representation for q�x1, x2� in the complex k
plane which, if l00�t� , 0, involves an integral along a
time-dependent contour, while if l00�t� . 0, involves an
integral along the real k axis and a double integral over a
fixed two-dimensional domain.

In order to minimize certain technical difficulties, we
consider a general linear evolution equation of the disper-
sive type

∑
≠t 1 i

nX
j�0

aj�2i≠x�j

∏
q�x, t� � 0 ,

l�t� , x , `, 0 , x , T ,
(1)

where all aj’s are real. We assume that q�x, 0� � q0�x� is
given and decaying for large x, and we look for a solution
which decays for large x; we also assume that l�0� � 0.
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The first step in the method introduced here is to
show that if there exists a solution, this solution ad-
mits an integral representation with explicit x and t
dependence. In order to describe this representation,
we define certain contours and domains in the complex
k plane, as well as the auxiliary function S�k, k�. Let
v�k� �

Pn
j�0 ajkj , and denote k � kR 1 ikI , v�k� �

vR 1 ivI . The domains D�t� and E�t� are defined
by D�t� � �k [ C: Im�v�k� 2 kl0�t�� . 0�; E�t� �
�k [ C: Im�v�k� 2 kl0�t�� , 0�. D1�t� and E1�t�
denote the parts of D�t� and E�t� in the upper half k
plane, and similarly D2�t� and E2�t� denote the parts of
D�t� and E�t� in the lower half k plane. ≠D1�t� is the
oriented boundary of D1�t�. L1 is the oriented contour
consisting of the part of the real axis which is also part of
D1�T�. L2 is the oriented contour consisting of the part of
the real axis which is also part of D1�0� > E1�T �. The
orientation of the contour ≠D1 is such that D1 lies on the
left-hand side of the increasing direction. The orientation
of L1 and L2 is from the left to the right.

The function S�k, k� � S�vI�kI � is defined as the in-
verse of the function vI�kI � l0�t�, i.e.,

S�k, k� � t iff vI�kI � l0�t�, 0 # t # T . (2)
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We note that vI�kI is always well defined, while S�vI�kI �
is defined in �1 only for k [ D1�0� > E1�T �, and it
takes values in �0, T �.

We will show that q�x, t� admits the following represen-
tations:

(a) l00�t� , 0:

q�x, t� �
1

2p

Z `

2`
eikx2iv�k�t q̂0�k� dk

1
1

2p

Z
≠D1�t�

eikx2iv�k�tQ̂�k� dk , (3)

where

q̂0�k� �
Z `

0
e2ikxq0�x� dx ,

Q̂�k� �
nX

j�1

aj�Q̂j21�k� 1 kQ̂j22�k�

1 · · · 1 kj21Q̂0�k�� 2 l0�t�Q̂0�k� , (4)

Q̂j�k� �
Z T

0
eiv�k�t2ikl�t��2i≠x�jq�l�t�, t� dt ,

j � 0, . . . , n 2 1 .

(b) l00�t� . 0:
q�x, t� �
1

2p

Ω Z `

2`
eikx2iv�k�t q̂0�k� dk 1

Z
L1

eikx2iv�k�tQ̂�k� dk 1
Z

L2

eikx2iv�k�tQ̂�k, S� dk

1
Z Z

D1�0�>E1�T�
eikx2iv�k�t ≠Q̂�k, S�

≠k
dk ^ dk

æ
, (5)
where dk ^ dk � 22idkRdkI , Q̂�k, S� is defined by an
equation similar to the equation defining Q̂�k�, but with T
replaced by S�vI�kI �.

Equation (1) with l�t� � 0 is studied in [5], where it is
shown that (a) q�x, t� is given by Eq. (3) with l�t� � 0.
(b) A necessary condition for well posedness is that N
boundary conditions are given at x � 0, where N � n�2
if n is even, N � �n 1 1��2 if n is odd and an . 0, and
N � �n 2 1��2 if n is odd and an , 0. (c) The functions
q̂0�k� and Q̂�k� satisfy a set of global relations. Using these
relations, it is shown in [5] that the function Q̂�k� can be
obtained from q̂0�k� and the N given boundary conditions
by solving a set of algebraic equations. As an example,
suppose that ≠

j
xq�0, t�, j � 0, . . . , N 2 1, are given. Then

Q̂�k� involves the n 2 N unknown functions ≠
j
xq�0, t�,

j � N , . . . , n 2 1. It is remarkable that the single global
relation satisfied by q̂0�k� and Q̂�k� is sufficient to deter-
mine all these unknown functions; see [5] for details.

We will show that the case l�t� fi 0 is conceptually
similar to the case l�t� � 0; in particular, the functions
q̂0�k�, Q̂�k�, and Q̂�k, S� satisfy certain global relations.
Using these relations, it can be shown that a necessary
condition for well posedness is that N boundary conditions
are prescribed. However, in contrast with the case l�t� �
0, the functions Q̂�k� and Q̂�k, S� cannot be computed
explicitly, but are determined through the solution of a
system of Volterra linear integral equations.

These global relations are
(a) l00�t� , 0:

q̂0�k� � 2Q̂�k� 1 eiv�k�T
Z `

l�T�
e2ikxq�x, T � dx ,

k [ D2�T� , (6)

q̂0�k� � 2Q̂�k, S� 1 eiv�k�S
Z `

l�S�
e2ikxq�x, T � dx ,

k [ E2�T � > D2�0� . (7)

(b) l00�t� . 0:

q̂0�k� � 2Q̂�k� 1 eiv�k�T
Z `

l�T�
e2ikxq�x, T � dx ,

k [ D2�t� . (8)

Using Eq. (8) it can be shown that, if l00�t� . 0, the
spectral functions q̂0�k� and Q̂�k� defined by Eqs. (4) sat-
isfy the integral relations
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Z
≠D2j �t�

eikl�t�2iv�k�t�q̂0�k� 1 Q̂�k�� dk � 0 ,

j � 1, . . . , n 2 N , (9)

where D2j�t� are the simply connected components of
D2�t�.

For a given boundary value problem, these relations can
be used to obtain a system of Volterra linear integral equa-
tions for the unknown part of the spectral function Q̂�k�.
Similarly if l00�t� , 0.

We now indicate how these results can be derived. Equa-
tion (1) admits the Lax pair

mx 2 ikm � q, mt 1 iv�k�m � 2q� , (10)

where

q��x, t� �
nX

j�1

aj��2i≠x�j21 1 k�2i≠x�j22

1 · · · 1 kj21�q�x, t� .

A solution of both Eqs. (10), bounded for all k [ C2, is
given by

m0�x, t, k� � 2
Z `

x
eik�x2y�q� y, t� dy . (11)

A second solution of Eqs. (10) is

m�x, t, k� � eik�x2l�t��F�t, k� 1
Z x

l�t�
eik�x2y�q� y, t� dy ,

(12)

where F�t, k� � m���l�t�, t, k��� satisfies the ODE

Ft 1 �iv�k� 2 ikl0�t��F � l0�t�q���l�t�, t���
2 q����l�t�, t, k��� . (13)

In order to find solutions of Eq. (12) which are bounded
for k [ C1, we must find solutions of Eq. (13) with this
property. Such solutions always exist. If l00�t� , 0, these
solutions are sectionally analytic, but if l00�t� . 0, there
exists a domain of the complex k plane where these solu-
tions are not analytic; this domain is D1�0� > E1�T �.

If l00�t� , 0, the sectionally analytic function m�x, t, k�
can be constructed from its jumps through the solution of
a scalar RH problem. These jumps are of the form D �
2eikx2iv�k�td�k�, where d�k� is given by q̂0�k�, k [ R,
and Q̂�k�, k [ ≠D1�t�. The solution of this RH problem
yields m�x, t, k� and then the first of Eqs. (10) implies
Eq. (3).

If l00�t� . 0, the sectionally bounded function m�x, t, k�
can be constructed from its jumps and from its d-bar
derivative through the solution of a d-bar problem; this
yields for q�x, t� Eq. (5).

We note that since m0���l�t�, t, k��� satisfies Eq. (13), this
function has a second representation. Comparing this sec-
ond representation with Eq. (11) evaluated at x � l�t� we
find the global relations (6)–(8). Multiplying Eq. (8) by
e2iv�k�t1ikl�t� we find, for k [ �2,
�q̂0�k� 1 Q̂�k��e2iv�k�t1ikl�t� � eiv�k� �T2t�1ik���l�T �2l�t����

3
Z `

l�T �
e2ikxq�x, T � dx .

(14)

We note that the terms q̂0�k�, Q̂�k�,
R`

l�T� e2ikxq�x, T � dx
are well defined for k [ �2 and each of them has at
least O�1�k� decay as k ! `. Thus by Abel’s theorem,
each term appearing in (14) can be integrated as k ! `.
Integrating along ≠Dj�t�, j � 1, . . . , n 2 N , and noting
that the last term in (14) is analytic and bounded in Dj�t�,
we obtain Eq. (9). Similarly for l00�t� , 0.

Example 1: qt 2 qxxx � 0.—In this case, n � 3 and
a3 � 1, thus N � 2. Since v�k� � k3, the domain D�t�
is defined by kI �3k2

R 2 k2
I 2 l0�t�� . 0; this domain, for

the case l0�t� , 0, is shown in Fig. 1.
The function S is defined by

l0�t� � 3k2
R 2 k2

I iff t � S�3k2
R 2 k2

I � .

The domain D1�0� > E1�T � for the case l0�t� , 0 is de-
picted in Fig. 2.

If l0�t� , 0, the contours L1 and L2 are empty. If
l0�t� . 0,

L1 �

"s
l0�T�

3
, `

#
<

"
2`, 2

s
l0�T �

3

#
,

L2 �

"s
l0�0�

3
,

s
l0�T�

3

#
<

"
2

s
l0�T�

3
, 2

s
l0�0�

3

#
.

The spectral function Q̂�k� is defined by

Q̂�k� �
Z T

0
eik3t2ikl�t���k2 1 l0�t��q���l�t�, t���

2 ikqx���l�t�, t��� 2 qxx���l�t�, t���� dt ;

the spectral function Q̂�S, k� is defined by a similar
expression, where T is replaced by S�3k2

R 2 k2
I �.

FIG. 1. Example 1: The domain D�t� for l0�t� , 0. The curve
is defined by 3k2

R 2 k2
I 2 l0�t� � 0.
4787
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If l0�t� , 0, the representation of q�x, t� is the
following.

(a) l00�t� , 0:

q�x, t� �
1

2p

Z `

2`
eikx2ik3t q̂0�k� dk

1
1

2p

Z
≠D1�t�

eikx2ik3tQ̂�k� dk .

(b) l00�t� . 0:
4788
q�x, t� �
1

2p

Z `

2`
eikx2ik3t q̂0�k� dk

1
1

2p

ZZ
D1�0�>E1�T�

3 eikx2ik3t ≠Q̂�S, k�
≠k

dk ^ dk .

In this case, Eq. (9) gives rise to one Volterra linear in-
tegral equation. As an illustrative example, suppose that
qx���l�t�, t��� � f1�t� and qxx���l�t�, t��� � f2�t� are prescribed.
Then Eq. (9) yields the following linear integral equation
for the unknown q�t� � q���l�t�, t���:
2p

3
q�t� � F�t� 2

Z t

0

µµµ Z
≠D2�t�

e2ik3�t2s�
Ω
�k2 2 l0�t��eik�l�t�2l�s�� 1

∑
l0�t�

3
2 k2

∏
eikl0�t� �t2s�

æ
dk

∂∂∂
q�s� ds , (15)

where F�t� is the known function

F�t� �
Z

≠D2�t�
e2ik3t1ikl�t�

Ω
q̂0�k� 2

Z t

0
eik3s2ikl�s�� f2�s� 1 ikf1�s�� ds

æ
dk .

We conclude with some remarks. (1) Under the assumption of existence of a solution q�x, t�, Eq. (1) can be solved
through a Fourier transform, yielding

q�x, t� �
1

2p

Z `

2`
eikx2iv�k�t q̂0�k� dk 2

1
2p

Z `

2`
eikx2iv�k�t

Z t

0
eiv�k�s1ikl�s��q����l�s�, s, k��� 2 l0�s�q���l�s�, s���� ds dk .

(16)

We emphasize that this equation does not provide the
spectral decomposition of q�x, t�. Furthermore, it is not
clear from this formula how many boundary conditions
are needed for a well-posed problem and how to deter-
mine the unknown functions ≠

j
xq���l�t�, t���. (2) An important

advantage of our method is that it can be applied to inte-
grable nonlinear PDEs; see [1,6,7]. In this case, the scalar
RH and d-bar problems must be replaced by their matrix-
valued analogs. This implies that q�x, t� does not admit
an explicit integral representation but can be expressed in
terms of the solution of a Fredholm linear integral equa-
tion. (3) For linear equations this method provides the con-
structive implementation and the generalization to concave
domains of the celebrated Ehrenpreis principle [8]. (4) It
is well known that the integral representation of the solu-
tion of a linear ordinary differential equation (ODE) in the

FIG. 2. Example 1: The domain D1�0� > E1�T � for l0�t� ,

0, bounded by the curves 3k2
R 2 k2

I 2 l0�0� � 0 and 3k2
R 2

k2
I 2 l0�T � � 0. The dotted line is R.
complex plane provides a powerful tool for the study of
many properties of this solution, including its asymptotic
behavior. For linear equations this method provides the
extension of such integral representations from ODE’s to
PDEs. We note that this extension takes the measure rdk,
where r is a constant, to either r�k�dk or r�k, k�dkRdkI .
(5) A RH problem is the fundamental object appearing in
the solution of the initial value problem on the infinite line
for integrable nonlinear equations in one space variable.
Furthermore, RH problems have appeared recently in a
variety of important applications in mathematical physics
[4]. A d-bar problem is the fundamental object appearing
in the solution of the initial value problem on the infinite
plane for nonlinear integrable equation in two space vari-
ables [9,10]. The results presented here show that for the
case of moving boundaries, d-bar problems play a crucial
role even for linear PDEs in one space variable. (6) An im-
portant advantage of the representations (3) and (5) is that
they have explicit x and t dependence. Similarly, the ma-
trix RH and d-bar problems associated with the analogous
problem for the nonlinear integrable equations have an ex-
plicit x and t dependence. This implies that it is possible
to study the long-time asymptotic behavior of the solution.
For linear equations, this can be achieved using the steep-
est descent method; for the RH case for nonlinear equa-
tions, it can be achieved using the elegant nonlinearization
of the steepest descent method of Deift and Zhou [11]. (7)
The physical difference between the two cases l00�t� , 0
and l00�t� . 0 can be understood by considering a piston
positioned at x � l�t�. This piston excites waves whose
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velocity is l0�t�. The group velocity of these waves is
v0�k�, thus if l00�t� . 0, the associated rays intersect again
with the piston.
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