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Recent behavior experiments have demonstrated that paddlefish can make use of stochastic resonance
while feeding on Daphnia plankton. Here we calculate the information content of the noisy Daphnia
signa at the paddlefish rostrum using an exact statistical treatment of threshold stochastic resonance as a
minimal neural model. These calculations compare well with experimentally obtained data on paddlefish

strikes at Daphnia prey.

PACS numbers: 87.10.+¢, 05.40.Ca, 87.16.Xa, 87.19.Bb

Stochastic resonance (SR) has by how awell established
history in a variety of fields [1] including sensory biology
[2], human psychophysics[3], and medicine [4], aswell as
at the molecular level [5]. The mechanism of SR accounts
for the presence of noise enhanced information about a
weak signal input to systems with nonlinearities such as
thresholds. However, in all experiments to date, with the
sole exception of human psychophysics [3], SR has been
demonstrated by computer analysis of data recorded from
an afferent sensory neuron. This, of course, leaves open
the question of whether or not the animal is aware of and
can make use of the enhanced information available at the
peripheral neurons. A recent behavioral experiment with
the paddlefish Polyodon spathula has provided evidence in
the affirmative [6]. This animal, as shown in Fig. 1, feeds
on plankton which it locates and captures using exclusively
its electrosense derived from an array of electroreceptor
cells spread over a long rostrum [7]. Daphnia, a favorite
prey of P. spathula, emit electrical signals a few tens of
microvolts in amplitude (at 5 mm) with both dc and ac
components. The Daphnia are only a millimeter or two
in size, and their associated electric field is approximately
dipolar. In this Letter, we consider them to be point dipole
sources. Data on strikes at Daphnia presented to thefishin
the space surrounding the rostrum with and without added
electrical noise are given in [6]. Here we consider only
the estimated strike probability, P,(d), in the vertical di-
rection at distances d, above and below the rostrum. These
estimates, which we call strike probability data, or simply
strike data, are shown in Fig. 2 for strikes at prey above
2(a) and below 2(b) the rostrum. The open triangles and
closed circles are the estimated strike probabilities with-
out and with, respectively, optimal electrical noise added
to the feeding environment. The optimal noise, approxi-
mately 0.5 uV/cm, rms, was experimentally measured in
Ref. [6]. It is that noise for which the strike probability
at distant Daphnia is maximally enhanced. The curves
are smoothed fits to the strike data for zero added noise
(dashed) and optimal noise (solid) curve. The solid curves
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are not symmetrical above and below the rostrum, possibly
because of the asymmetry of the fish's anatomy. The two
features upon which we focus here are shown by the cross-
ing of the solid and dashed curves at small distances, and
the enhanced strike probahility at long distance, shown by
the solid curves relative to the dashed curves.

Paddlefish locate, track, and capture Daphnia by means
of complicated neural and brain functions that are largely
unknown. Nevertheless, we show here that a simple sta-
tistical determination of the information available at the
rostrum can reproduce the two aforementioned features of
the strike data. This implies a close relationship between
information in the model and strike probability in the data.

Our modeling approach is intended to be minimal, in-
volving no neural encoding scheme and the use of only
the threshold, or nondynamical, picture of stochastic reso-
nance [8]. As a measure of detectability of the Daphnia
we use the Fisher information [9], based on thresholded
data, anatural measure since it was developed for analysis
of behavioral experiments. Moreover, a clean knowledge
of the input stimulus, obviously unavailable to the animal,
is unnecessary for the present theory. In our study, the
Fisher information is related to the variance of an opti-
mal estimator of the signal level of the dipole electrical
field generated by the Daphnia. We calculate the Fisher
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FIG. 1. The paddiefish, showing its rostrum, which supports
an array of thousands of electroreceptor cells, and its prey, the
plankton Daphnia, a distance d above the rostrum. The fish
locates and capturesiits prey entirely by electrosense. For details
see [6] and [7].
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FIG. 3. Schematic representation of the signal level s (dashed
0.22 T T T T T T horizontal line), threshold « (continuous horizontal line), and
added Gaussian noise (mean zero, standard deviation o, inde-
o018l 2 b) pendent samples represented by uniformly spaced black dots
<A (b) of various magnitudes). The sequence of 1's and 0's dis-
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FIG. 2. The estimated strike probabilities from [6] for zero
added noise (open triangles, dashed curve) and for the opti-
mal level of noise, 0.5 wV/cm, rms (solid circles, solid curve):
(a) for strikes above the rostrum; (b) for strikes below the ros-
trum. The effects due to SR are small but statistically significant
as demonstrated in Ref. [6]. The curves were obtained from a
nonlinear, distance-weighted least squares fit.

information, I, from the noisy Daphnia signal level at the
surface of the rostrum under the following assumptions:
(1) The Daphnia are represented as point dipole sources
whose amplitudes consequently decrease as 1/d* with the
vertical distance above and below the rostrum. (2) The
noise is added to the Daphnia signal at the rostrum, asin
the experiment [6], and hence is independent of d. Gauss-
ian noise is added to the signal at a sequence of uniformly
spaced times; the noise is independent and identically dis-
tributed for each time. We ask only whether the signal
plus the noise exceeds a threshold a or not, a each noise
sample time, as depicted in Fig. 3. We calculate the Fisher
information contained in the temporal sequence of thresh-
old exceedances (1's) and nonexceedances (0's). As in
many psychophysics experiments [10], we assume that the
probability of behavioral response, in this case P(d), is
mediated by the availability of information, in this case
the Fisher information at the sensory periphery, 1(d), as
defined below.
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played above the threshold line records the exceedances and non-
exceedances of the threshold by s plus noise, respectively, at
each sample time [e.g., for the first time point: 0.3 + (—0.2) =
0.1 < 1.0 so a 0 is displayed].

A detailed statistical analysis of agenera version of this
process appears elsewhere for both single and multiple
thresholds and for both constant [11] and periodic [12]
signals. We summarize the theory here.

As noise we take n independent samples, ¢i,..., &,,
with distribution function F, later chosen to be a Gaussian.
We add these to the signal, s, and construct a time series
of 0’'sand 1's that mark the threshold exceedances:

X4 =1,
=0,
which are independent Bernoulli random variables with
probabilities
ps = PX! =1)=Pya,»)=1—-F(a—3s). (2
The signal can be writtenass = a — F~ (1 — p,). An
estimator for the probability, ps,isp = (1/n) >, X{' =
i/n, where i isthe number of 1'sin the sequence (1). The
normalized error, n'/2(p — p), is asymptotically normal
with variance p,(1 — p,). The corresponding estimator
for the signal is§ = a — F~'(1 — p). The normalized
error, n'/2(3 — s), is asymptotically normal with variance
o _ _pll=p) _Fla=9[l -~ Fla~s)]
Y fIETN = po)P fla —s)? ’
(©)
the inverse of which is the Fisher information for estima-
tion of s from the series of X{. If the noise is Gauss-
ian, F = ® = [*_ ¢ dx with density ¢ = (1//27) X
exp(—x?/2), and the Fisher information is
o [6 (‘5P
7 PR - e(F

if (s +¢g;)>a,
otherwise, (@0}

i=1,...,n,

(4)
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where o is the standard deviation of the noise distribu-
tion. This is an exact expression; that is, it extends to
regimes beyond the linear response to the Daphnia sig-
nal. Asaresult, the optimal noise level that maximizes the
Fisher information is a function of the signal s. We rep-
resent the Daphnia signal ass = 1/(d + 1)3, which goes
to zero as d — o0 and avoids becoming singular at d = 0.
In Fig. 4(a) the Fisher information 7¢,(d) from Eq. (4) is
plotted as a function of ¢ and d with threshold ¢ = 1. In
Fig. 4(b) we show the Fisher information for two selected
vaues of the noise intensity as a function of distance. Our
results, drawn from a comparison of Figs. 2(a), 2(b), and
4(b) are qualitative and based on the following assump-
tions. In Fig. 4(b) the dashed curveisfor noise ¢ = 0.15,
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FIG. 4. (@) A three-dimensional plot of the Fisher information

from Eq. (4) for the noise intensity, o, and the vertical distance
to a Daphnia, d. Note the shift of the information maximum
towards smaller values of o for smaller distances, d, which
correspond to larger signal levels s. (b) The Fisher information
at the surface of the rostrum as a function of d. The dashed
curve is from Eq. (4) for o = 0.15, simulating a low level of
internal noise. The solid curve is from Eq. (4) with o = 0.2,
simulating an optimal level of externally applied noise. The
distances are in arbitrary units. Note that this minimal theory
does not capture the asymmetry observed in the experiment [6];
that is, it does not distinguish the strike probability above from
that below the rostrum.

which we regard as a smaller noise that is internal to the
paddlefish neural system and/or noise due to small erratic
motions of the Daphnia. This is meant to model our re-
sults [6] for zero experimentally added noise. The internd
noise avoids a sharp step function for the estimated strike
probability at the detection threshold. The solid curve is
for o = 0.2 and is meant to model the detection process
for experimentally added optimal noise. We note that the
curves cross at small distance. Thisistheresult of the shift
of the maxima for smaller distances (larger signal ampli-
tudes) towards lower noise intensity, together with the in-
crease in the size of these maxima. Note also that the solid
curveisdlightly elevated at large distances. Thisrepresents
the noi se enhancement of the strike probability at large dis-
tances. These are the two features of the experimental data
that our minimal model has captured qualitatively.

We assume that if o were 0 there would be no strikes,
i.e., that the Daphnia signal is below the threshold of a
“comatose” paddiefish, and that the signal produced by
a Daphnia very close to the rostrum is, in fact, near the
threshold of this comatose paddlefish. Thisgivesusacom-
mon location or initial point for the two figures. We have
chosen the distance scale in Fig. 4(b) so that the size of the
figure correspondsto Fig. 2. Hence no meaning can be at-
tached to the similarity of scale in the two figures. The
measure of detectability in Figs. 2(a) and 2(b) is the esti-
mated strike probability, which corresponds to the Fisher
information measure in Fig. 4(b) only in that each should
be amonotonically increasing function of the other. Hence
the conclusions we can draw from the similarities of these
figures are strictly qualitative, and closer comparison must
await further study.

The graphs of estimated strike probability versus dis-
tance presented in Fig. 2 resemble what is called in hu-
man psychophysics the “psychometric function” with the
x axis plotted in reverse [10]. The psychometric function
displays the probability of a signal being detected (or, the
probability that signal plus noise exceeds a threshold) as
a function of signal amplitude. It usually resembles the
s-shaped graph of the normal distribution function. One
interpretation of the sigmoid shape is that the function rep-
resents the interaction of an approximately normal distri-
bution of signal plus noise with afixed threshold (cf. [13]).
In such a plot, the threshold is taken to be the signal am-
plitude at which the probability of detecting the signa is
0.5. Two psychometric functions that are shifted with re-
spect to one another on the signal amplitude axis can be
interpreted as exhibiting a difference in sensitivity, where
the function with lower threshold, as just defined, repre-
sents the higher sensitivity. Such an interpretation can be
made of the pairs of functionsin Figs. 2(a), 2(b), and 4(b).
Adding noise shifts the function to the right, which corre-
sponds to weaker signals and indicates greater sensitivity
at large distances. In each of Figs. 2(a), 2(b), and 4(b) an
increase of noise also lowers the maximum value of the
function so that the two curves cross. This is a feature
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of the family of stochastic resonance curves exhibited in
Fig. 4(a), which shows a decrease in the maximum infor-
mation, as well as occurrence of this maximum at smaller
distances, with increasing noise intensity. The repetition
of this pattern in the strike probability data, Figs. 2(a) and
2(b), indicates that this aspect of the stochastic resonance
phenomenon occurs in the responses of the paddlefish. In-
terestingly, such nonparallelism in psychometric functions
is usually interpreted as a difference in the noise intensity
between the two situations, with the “lower” function hav-
ing the greater noise intensity, exactly asin Figs. 2 and 4.
However, since the maximum of the function representing
the higher noise intensity is not lowered in psychometric
theory, that aspect of psychometric theory is not relevant
in this context. Thus, the paddlefish strike probability data
are compatible with our simple stochastic resonance model
as well as with at least part of the psychophysical theory
of psychometric functions.
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